Forgot password?
 Register account
View 198|Reply 2

Regular paperfolding sequence

[Copy link]

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2022-4-24 00:54 |Read mode
Regular paperfolding sequence定义为以下0-1序列的极限:
1
1 1 0
1 1 0 1 1 0 0
1 1 0 1 1 0 0 1 1 1 0 0 1 0 0
每次将前一个序列的项,插入一个 1,0,1,0⋯ 的交替序列。从 $n = 1$ 开始,Regular paperfolding sequence的前几项是:
1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, ... (sequence A014577 in the OEIS)

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2022-4-24 00:57
在regular paperfolding sequence中任何给定项 $t_n$ 的值可以递归地计算如下。如果 $n = m·2^k$ 其中 $m$ 是奇数,则 ${\displaystyle t_{n}={\begin{cases}1&{\text{if }}m\equiv 1\mod 4\\0&{\text{if }}m\equiv 3\mod 4\end{cases}}}$

所以 t12 = t3 = 0 但 t13 = 1.

The paperfolding word 1101100111001001... 是通过连接regular paperfolding sequence的项获得的,是以下态射(morphism)或字符串替换规则的不动点
11 1101
01 1001
10 1100
00 1000
像下面这样:
11 1101 11011001 1101100111001001 11011001110010011101100011001001 ...
从态射规则可以看出,paperfolding word最多包含三个连续的 0,最多包含三个连续的 1。
paperfolding sequence也满足对称关系:
${\displaystyle t_{n}={\begin{cases}1&{\text{if }}n=2^{k}\\1-t_{2^{k}-n}&{\text{if }}2^{k-1}< n<2^{k}\end{cases}}}$
这表明paperfolding word为另一个迭代过程的极限,如下所示:
1
1 1 0
110 1 100
1101100 1 1100100
110110011100100 1 110110001100100
在每次迭代中,将 1 放置在前一次迭代字符串的末尾,然后以相反的顺序重复此字符串,将 0 替换为 1,1 替换为 0。

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2022-4-24 01:06
由构造过程知paperfolding sequence的生成函数${\displaystyle G(t_{n};x)=\sum _{n=1}^{\infty }t_{n}x^{n}}$满足
${\displaystyle G(t_{n};x)=G(t_{n};x^{2})+\sum _{n=0}^{\infty }x^{4n+1}=G(t_{n};x^{2})+{\frac {x}{1-x^{4}}}\,.}$

Mobile version|Discuz Math Forum

2025-5-31 10:49 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit