Forgot password?
 Register account
View 321|Reply 5

[函数] 怎么用和差化积公式算呢

[Copy link]

41

Threads

60

Posts

563

Credits

Credits
563

Show all posts

baxiannv Posted 2022-4-27 12:22 |Read mode
Last edited by hbghlyj 2025-3-9 05:373.已知向量 $a=\left(\cos 75^{\circ}, \sin 75^{\circ}\right), b=\left(\cos 15^{\circ}, \sin 15^{\circ}\right)$ ,则 $|a-b|$ 的值为
A.$\frac{1}{2}$
B. 1
C. 2
D. 3

25

Threads

1011

Posts

110K

Credits

Credits
12665

Show all posts

战巡 Posted 2022-4-27 15:14
回复 1# baxiannv


为啥要和差化积......

\[|\vec{a}-\vec{b}|^2=(\cos(75\du)-\cos(15\du))^2+(\sin(75\du)-\sin(15\du))^2\]
\[=\cos^2(75\du)+\cos^2(15\du)-2\cos(75\du)\cos(15\du)+\sin^2(75\du)+\sin^2(15\du)-2\sin(75\du)\sin(15\du)\]
\[=2-2\cos(75\du-15\du)=...\]

41

Threads

60

Posts

563

Credits

Credits
563

Show all posts

 Author| baxiannv Posted 2022-4-27 15:16
[因为我和差化积算来算去都是根号2b]回复 2# 战巡 [/b]

25

Threads

1011

Posts

110K

Credits

Credits
12665

Show all posts

战巡 Posted 2022-4-27 16:22
回复 3# baxiannv


怎么可能呢?

\[\cos(75\du)-\cos(15\du)=2\sin(\frac{75\du+15\du}{2})\sin(\frac{15\du-75\du}{2})\]
\[=2\sin(45\du)\sin(-30\du)=2\cdot\frac{1}{\sqrt{2}}\cdot(-\frac{1}{2})=-\frac{1}{\sqrt{2}}\]

\[\sin(75\du)-\sin(15\du)=2\sin(\frac{75\du-15\du}{2})\cos(\frac{75\du+15\du}{2})\]
\[=2\sin(30\du)\cos(45\du)=\frac{1}{\sqrt{2}}\]

那么
\[|\vec{a}-\vec{b}|=\sqrt{(-\frac{1}{\sqrt{2}})^2+(\frac{1}{\sqrt{2}})^2}=1\]

Rate

Number of participants 1威望 +1 Collapse Reason
isee + 1

View Rating Log

277

Threads

547

Posts

5413

Credits

Credits
5413

Show all posts

力工 Posted 2022-4-27 17:25
用几何意义,就是正三角形了。楼主何苦自己逼自己走河汊滑鸡呢。

Rate

Number of participants 1威望 +1 Collapse Reason
isee + 1

View Rating Log

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2022-4-27 20:15
回复 5# 力工


现状是几何(中学生)都很弱,想到单位圆上都不易了,再去化归平面向量的模更难了,虽然可秒~

Mobile version|Discuz Math Forum

2025-5-31 10:35 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit