Forgot password
 Register account
View 460|Reply 4

[几何] 面积与长度

[Copy link]

281

Threads

550

Posts

2

Reputation

Show all posts

力工 posted 2022-4-27 18:31 |Read mode
平面几何,求长度 FFD067C0@9E82E96C.E716646200000000_recompress.jpg

24

Threads

1014

Posts

46

Reputation

Show all posts

战巡 posted 2022-4-27 20:37
回复 1# 力工


令$AD=x$,$CD=y$

显然$A,C,B,D$共圆,有$\angle ADC=\angle BDC=45\du$,于是按角平分线定理有
\[\frac{BE}{AE}=\frac{BD}{AD}=\frac{4}{x}\]
于是
\[\frac{S_{\Delta ADF}}{S_{\Delta ADC}}=\frac{AF}{AC}=\frac{AE}{AB}=\frac{1}{1+\frac{4}{x}}=\frac{x}{x+4}\]
这里
\[S_{\Delta ADC}=\frac{1}{2}AD\cdot CD\sin(\angle ADC)=\frac{xy}{2\sqrt{2}}\]

这就有
\[\frac{S_{\Delta ADF}}{S_{\Delta ADC}}=\frac{18\sqrt{2}}{xy}=\frac{x}{x+4}\]
这是第一条方程

第二条方程,由托勒密定理得到
\[AC\cdot BD+BC\cdot AD=AB\cdot CD\]
这里面$AC=BC=\frac{AB}{\sqrt{2}}$,也就有
\[BD+AD=\sqrt{2}CD\]
\[4+x=\sqrt{2}y\]
两个方程解出来得到
\[x=6,y=5\sqrt{2}\]

Rate

Number of participants 1威望 +1 Collapse Reason
力工 + 1

View Rating Log

281

Threads

550

Posts

2

Reputation

Show all posts

original poster 力工 posted 2022-4-27 22:23
回复 2# 战巡
大神高!居然用上托乐咪定理,我真没想到这个。

56

Threads

984

Posts

41

Reputation

Show all posts

乌贼 posted 2022-4-28 02:48
Last edited by 乌贼 2022-4-28 13:38如图: 211.png
   作$ AP\perp CD $,垂足为$ P $,有$ AFPE $四点共圆。得\[ \angle FPC=45\du \riff FP\px AD\riff S_{\triangle AFD}=S_{\triangle APD}=9\riff AP=\sqrt{18}\riff AD=6 \]……

Rate

Number of participants 1威望 +1 Collapse Reason
力工 + 1 简洁,快刀!

View Rating Log

281

Threads

550

Posts

2

Reputation

Show all posts

original poster 力工 posted 2022-4-29 11:16
两位的想法合二为一,学习了。 微信图片_20220429111527.jpg

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 15:02 GMT+8

Powered by Discuz!

Processed in 0.019608 seconds, 27 queries