|
Author |
hbghlyj
Posted 2022-4-28 03:23
www8.cs.umu.se/kurser/5DV005/HT11/TVB.pdf page 102
Theorem 6.4 If $f(r)=0 ; f^{\prime}(r) \neq 0$, and $f^{\prime \prime}(x)$ is continuous, then for $x_{0}$, $x_{1}$ close enough to $r$,
$$
\lim _{k \rightarrow \infty} \frac{\left|e_{k+1}\right|}{\left|e_{k}\right|^{\phi}}=\left|\frac{f^{\prime \prime}(r)}{2 f^{\prime}(r)}\right|^{\phi-1}
$$
where $e_{k}=x_{k}-r$ is the error, and $\phi=(\sqrt{5}+1) / 2 \cong 1.618$ is the root of the equation $\phi^{2}=\phi+1$, and is called the Golden Ratio.
In practice,
$$
e_{k+1} \simeq \frac{f^{\prime \prime}(r)}{2 f^{\prime}(r)} \cdot\left(e_{k-1} \cdot e_{k}\right)
$$
In contrast, for Newton iterations,
$$
e_{k+1} \simeq \frac{f^{\prime \prime}(r)}{2 f^{\prime}(r)} e_{k}^{2} .
$$
Thus, Newton's method is more powerful than the secant method. A better comparison of the "effectiveness" of these two methods should also consider the "work" needed for convergence.
For the secant method,
$$
\begin{aligned}
\left|e_{k+2}\right| & \simeq\left|\frac{f^{\prime \prime}(r)}{2 f^{\prime}(r)}\right|^{\phi-1}\left|e_{k+1}\right|^{\phi} \\
&=\left|\frac{f^{\prime \prime}(r)}{2 f^{\prime}(r)}\right|^{\phi-1}\left[\left|\frac{f^{\prime \prime}(r)}{2 f^{\prime}(r)}\right|^{\phi-1}\left|e_{k}\right|^{\phi}\right]^{\phi} \\
&=\left|\frac{f^{\prime \prime}(r)}{2 f^{\prime}(r)}\right|^{(\phi-1)+\left(\phi^{2}-\phi\right)} *\left|e_{k}\right|^{\phi^{2}} .
\end{aligned}
$$
But, $\phi^{2}=\phi+1$, therefore
$$
\left|e_{k+2}\right| \simeq\left|\frac{f^{\prime \prime}(r)}{2 f^{\prime}(r)}\right|^{\phi} \cdot\left|e_{k}\right|^{\phi+1},
$$
Thus, two steps of the secant method have an order of convergence $\simeq 2.618$, which is greater than that of Newton. |
|