Forgot password?
 Register account
View 525|Reply 10

请问我这个写的对不对

[Copy link]

41

Threads

60

Posts

563

Credits

Credits
563

Show all posts

baxiannv Posted 2022-4-28 13:38 |Read mode
Last edited by hbghlyj 2025-3-9 05:38\begin{aligned}
& x=r \cos \theta \\
& y=r \sin \theta \\
& \overrightarrow{d x}=d r \cos \theta \overrightarrow{e_r}+(-r \sin \theta) d \theta \vec{e}_\theta \\
& d \vec{y}=\sin \theta d r \vec{e}_r+r \cos \theta d \theta \overrightarrow{e_\theta} \\
& |\overrightarrow{d x}| \cdot|\overrightarrow{d y}|=d x d y=
r d r d \theta= \sqrt{\cos ^2 \theta(d r)^2+(r \sin \theta)^2(d \theta)^2}
\sqrt{\sin ^2 \theta(d r)^2+(r \cos \theta)^2(d \theta)^2}
\end{aligned}

411

Threads

1634

Posts

110K

Credits

Credits
11888

Show all posts

abababa Posted 2022-4-28 14:04
回复 1# baxiannv

最后等于根号那些不对吧,两边平方,左边是$(dr)^2$,右边是$(dr)^4$。

41

Threads

60

Posts

563

Credits

Credits
563

Show all posts

 Author| baxiannv Posted 2022-4-28 14:09
额 应该怎么改 有点看不出回复 2# abababa

411

Threads

1634

Posts

110K

Credits

Credits
11888

Show all posts

abababa Posted 2022-4-28 14:12
回复 3# baxiannv

$rdrd\theta$已经是关于$r$和$\theta$的比较简单的形式了,要改成什么样呢?

41

Threads

60

Posts

563

Credits

Credits
563

Show all posts

 Author| baxiannv Posted 2022-4-28 14:18
额 我还是没看出来哪里不对 想不通回复 4# abababa

41

Threads

60

Posts

563

Credits

Credits
563

Show all posts

 Author| baxiannv Posted 2022-4-28 14:19
没看出来曲线坐标系直角坐标系之间转换。回复 2# abababa

411

Threads

1634

Posts

110K

Credits

Credits
11888

Show all posts

abababa Posted 2022-4-28 14:28
回复 5# baxiannv
这个要是对的话,两边平方后作差,就得有
\[0=(rdrd\theta)^2-(\cos^2\theta(dr)^2+(r\sin\theta)^2(d\theta)^2)(\sin^2\theta(dr)^2+(r\cos\theta)^2(d\theta)^2)\]

但是展开右边那个,不是恒等于零的啊,比如就代入$\theta=\pi/3$,这时$\cos\theta=1/2,\sin\theta=\sqrt{3}/2$,上式就是
\[0=(rdrd\theta)^2-((dr)^2/4+3r^2/4(d\theta)^2)(3(dr)^2/4+r^2/4(d\theta)^2)\]

但是把右边乘出来不等于左边的零。

41

Threads

60

Posts

563

Credits

Credits
563

Show all posts

 Author| baxiannv Posted 2022-4-28 14:51
那我究竟是哪一步写错了啊回复 7# abababa

411

Threads

1634

Posts

110K

Credits

Credits
11888

Show all posts

abababa Posted 2022-4-28 17:34
回复 8# baxiannv

就是最后一步啊,前面的那些都没错。

41

Threads

60

Posts

563

Credits

Credits
563

Show all posts

 Author| baxiannv Posted 2022-4-28 18:22
Last edited by hbghlyj 2025-3-9 05:39这俩步我咋感觉也不对。。。
\begin{aligned}
& x=r \cos \theta \\
& y=r \sin \theta \\
& \color{red}{\overrightarrow{d x}=d r \cos \theta \overrightarrow{e_r}+(-r \sin \theta) d \theta \vec{e}_\theta }\\
& \color{red}{d \vec{y}=\sin \theta d r \vec{e}_r+r \cos \theta d \theta \overrightarrow{e_\theta} }\\
& |\overrightarrow{d x}| \cdot|\overrightarrow{d y}|=d x d y=
r d r d \theta= \sqrt{\cos ^2 \theta(d r)^2+(r \sin \theta)^2(d \theta)^2}
\sqrt{\sin ^2 \theta(d r)^2+(r \cos \theta)^2(d \theta)^2}
\end{aligned}

411

Threads

1634

Posts

110K

Credits

Credits
11888

Show all posts

abababa Posted 2022-4-28 19:05
回复 10# baxiannv
这几个都是对的啊。
$dx=\cos\theta dr-r\sin\theta d\theta,dy=\sin\theta dr+r\cos\theta d\theta$,然后
\begin{align*}
dxdy
&=(\cos\theta dr-r\sin\theta d\theta)\wedge(\sin\theta dr+r\cos\theta d\theta)\\
&=\color{blue}{\cos\theta dr\wedge\sin\theta dr}-r\sin\theta d\theta\wedge\sin\theta dr+\cos\theta dr\wedge r\cos\theta d\theta\color{blue}{-r\sin\theta d\theta\wedge r\cos\theta d\theta}
\end{align*}

因为上面外积形式的乘法满足$dr\wedge dr=0,d\theta\wedge d\theta=0, dr\wedge d\theta =-d\theta\wedge dr$,所以蓝色部分就变成零了,黑色部分统一成$dr\wedge d\theta$的形式,就是
\[r\sin^2\theta drd\theta+r\cos^2\theta drd\theta=rdrd\theta\]

Mobile version|Discuz Math Forum

2025-6-5 18:25 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit