|
本帖最后由 hbghlyj 于 2022-12-31 13:19 编辑
arxiv.org/abs/1610.03962
$\newcommand\0{R}
\newcommand\1{r}
\newcommand\2{r_c}
\newcommand\ip[2]{\langle#1,#2\rangle}
\newcommand\4{\Delta}
\newcommand\7{d_a}
\newcommand\8{d_b}
\newcommand\9{d_c}
\renewcommand\v[1]{\mathbf{#1}}
\newcommand\eh{\frac12}
\newcommand\nv[1]{\|\v #1\|}
\newcommand\nn[1]{\|#1\|}
\newcommand\ipv[2]{\ip{\v #1}{\v #2}}
\newcommand\qq[1]{\kern1pt\overline{\kern-1pt#1\kern-0.5pt}\kern0.5pt}
\newcommand\vv[1]{\overrightarrow{#1}}
\newcommand\bb[2]{|#1#2|}
\renewcommand\gg[2]{\ell(#1,#2)}
$Let $\triangle ABC$ be a triangle with circumradius $\0$ and sidelengths $a$, $b$ and $c$.
We choose a coordinate system, which has its origin in the circumcenter $O$ of the triangle.
We denote the vectors from $O$ to the vertices $A$, $B$ and $C$ by $\v u$, $\v v$ and $\v w$ respectively.
Then we have $a=\|\v v-\v w\|$, $b=\|\v u-\v w\|$, $c=\|\v u-\v v\|$ and
$\|\v u\|=\|\v v\|=\|\v w\|=R$.
The semiperimeter $\eh(a+b+c)$ is denoted by $s$.
Let $N$ be the nine-point center and $H$ the orthocenter of the triangle.
Set $\v n=\eh\v u+\eh\v v+\eh\v w$. Then we have
$\|\v n-(\eh\v u+\eh\v v)\|=\eh\|\v w\|=\eh\0$. Similarly we get
$\|\v n-(\eh\v u+\eh\v w)\|=\eh\0$ and $\|\v n-(\eh\v v+\eh\v w)\|=\eh\0$.
Therefore $\v n$ is the vector from $O$ to $N$ and $\eh \0$ is the nine-point radius.
Let $I$ be the incenter and $I_c$ the excenter opposite $C$.
Set $\v m=\frac a{2s}\v u+\frac b{2s}\v v+\frac c{2s}\v w$.
The equations of the angle bisectors through $A$ and $B$ are
$$ \v u+\lambda(\tfrac1c(\v v-\v u)+\tfrac1b(\v w-\v u)) \ \ \ \text{ and }\ \ \
\v v+\mu(\tfrac1c(\v u-\v v)+\tfrac1a(\v w-\v v)) $$
Choosing $\lambda=\frac{bc}{2s}$ and $\mu=\frac{ac}{2s}$ we get $\v m$ in both cases.
This shows that $\v m$ is the vector from $O$ to the incenter $I$.
Set $\v m_c=\frac a{2(s-c)}\v u+\frac b{2(s-c)}\v v-\frac c{2(s-c)}\v w$.
The equations of the external angle bisectors through $A$ and $B$ are
$$ \v u+\lambda(\tfrac1c(\v v-\v u)-\tfrac1b(\v w-\v u)) \ \ \ \text{ and }\ \ \
\v v+\mu(\tfrac1c(\v u-\v v)-\tfrac1a(\v w-\v v)) $$
Choosing $\lambda=\frac{bc}{2(s-c)}$ and $\mu=\frac{ac}{2(s-c)}$ we get $\v m_c$ in both cases.
This shows that $\v m_c$ is the vector from $O$ to the excenter $I_c$.
We use the following lemma for the computation of distances.
Lemma
For any $\7$, $\8$ and $\9$ in $\mathbb R$ we have
$$\|\7\v u+\8\v v+\9\v w\|^2=\0^2(\7+\8+\9)^2-(a^2\8\9+b^2\7\9+c^2\7\8) $$
Proof. We have
$c^2=\|\v u-\v v\|^2=\ip{\v u-\v v}{\v u-\v v}=\|\v u\|^2+\|\v v\|^2-2\ip{\v u}{\v v}$.
Since we have also $\|\v u\|=\|\v v\|=\0$ we get $\ip{\v u}{\v v}=\0^2-\eh c^2$.
Similarly we get $\ip{\v u}{\v w}=\0^2-\eh b^2$ and $\ip{\v v}{\v w}=\0^2-\eh a^2$.
Using this and $\|\v u\|=\|\v v\|=\|\v w\|=\0$ we compute
\begin{align*}
\|\7\v u+&\8\v v+\9\v w\|^2 \\
&=\7^2\|\v u\|^2+\8^2\|\v v\|^2+\9^2\|\v w\|^2
+2\7\8\ip{\v u}{\v v}+2\7\9\ip{\v u}{\v w}+2\8\9\ip{\v v}{\v w} \\
&=\0^2(\7^2+\8^2+\9^2+2\7\8+2\7\9+2\8\9)-c^2\7\8-b^2\7\9-a^2\8\9
\end{align*}
This is the desired result.
We use Heron's formula $\4^2=s(s-a)(s-b)(s-c)$ for the area $\4$ of the triangle.
This can also be written as $16\4^2=2a^2b^2+2a^2c^2+2b^2c^2-a^4-b^4-c^4$.
Furthermore, we use the formulas $\1=\frac\4s$, $\2=\frac\4{s-c}$ and $\0=\frac{abc}{4\4}$
for the inradius $\1$, the exradius $\2$ and the circumradius $\0$.
In particular we have $\1\0=\frac{abc}{4s}$ and $\2\0=\frac{abc}{4(s-c)}$.
Theorem 0 (Euler) $|OI|^2=\0^2-2\0\1$
Proof. We have $\overrightarrow{OI}=\v m=\7\v u+\8\v v+\9\v w$ with
$\7=\frac a{2s}$, $\8=\frac b{2s}$ and $\9=\frac c{2s}$.
We get $\7+\8+\9=1$ and $a^2\8\9+b^2\7\9+c^2\7\8=\frac{abc}{4s^2}(a+b+c)=\frac{abc}{2s}=2\1\0$.
The Lemma gives the result.
Theorem 1 (Feuerbach) $|IN|=\eh\0-\1$
Proof. We have $\overrightarrow{IN}=\v n-\v m=\7\v u+\8\v v+\9\v w$ with
$\7=\frac{s-a}{2s}$, $\8=\frac{s-b}{2s}$ and $\9=\frac{s-c}{2s}$.
We get $\7+\8+\9=\eh$ and
\begin{align*}
a^2\8\9&+b^2\7\9+c^2\7\8 \\
&=\tfrac{1}{16s^2}(a^2(a^2-(b-c)^2)+b^2(b^2-(a-c)^2)+c^2(c^2-(a-b)^2)) \\
&=\tfrac{1}{16s^2}(a^4+b^4+c^4-2a^2b^2-2a^2c^2-2b^2c^2 +2abc(a+b+c)) \\
&=-\tfrac{\4^2}{s^2}+\tfrac{abc}{4s}=-\1^2+\1\0
\end{align*}
The Lemma implies $|IN|^2=\frac14\0^2+\1^2-\1\0=(\eh\0-\1)^2$.
By Theorem 0 we have $\eh\0\ge\1$. Hence $|IN|=\eh\0-\1$ follows.
Theorem 2 (Feuerbach) $|I_cN|=\eh\0+\2$
Proof. We have $\overrightarrow{I_cN}=\v n-\v m_c=\7\v u+\8\v v+\9\v w$ with
$\7=\frac12-\frac a{2(s-c)}=-\frac{s-b}{2(s-c)}$, $\8=\frac12-\frac b{2(s-c)}=-\frac{s-a}{2(s-c)}$
and $\9=\frac12+\frac c{2(s-c)}=\frac{s}{2(s-c)}$.
We get $\7+\8+\9=\eh$ and
\begin{align*}
a^2\8\9&+b^2\7\9+c^2\7\8 \\
&=\tfrac{1}{16(s-c)^2}(a^2(a^2-(b+c)^2)+b^2(b^2-(a+c)^2)+c^2(c^2-(a-b)^2)) \\
&=\tfrac{1}{16(s-c)^2}(a^4+b^4+c^4-2a^2b^2-2a^2c^2-2b^2c^2 -2abc(a+b-c)) \\
&=-\tfrac{\4^2}{(s-c)^2}-\tfrac{abc}{4(s-c)}=-\2^2-\2\0
\end{align*}
The Lemma implies $|I_cN|^2=\frac14\0^2+\2^2+\2\0=(\eh\0+\2)^2$. We get $|I_cN|=\eh\0+\2$.
Theorem 1 implies that the nine-point circle is tangent to the incircle and
Theorem 2 implies that the nine-point circle is tangent to the excircle opposite $C$.
We get also
Theorem $|OH|^2=9\0^2-(a^2+b^2+c^2)$
Proof.
Since $N$ is the midpoint between $O$ and $H$, we get that
$\v u+\v v+\v w$ is the vector from $O$ to $H$.
Hence the desired result follows from the Lemma with $\7=\8=\9 =1$.
Classical proofs of of Feuerbach's Theorem can be found in [F] and [J].
In [S] a proof is given, which uses vector computations.
The proof in this paper is still simpler than those in [S].
Bibliography
[F]
K. W. Feuerbach,
Eigenschaften einiger merkwürdigen Punkte des geradlinigen Dreiecks und
mehrerer durch sie bestimmten Linien und Figuren: Eine analytisch-trigonometrische Abhandlung,
Riegel & Wiesner Nürnberg, 1822.
[J]
R. Johnson,
Advanced Euclidean Geometry.
Dover Publications, 2013.
[S]
Michael J. G. Scheer,
A Simple Vector Proof of Feuerbach's Theorem.
Forum Geometricorum $\textbf{11}~(2011), 205 – 210$. |
|