Forgot password
 Register account
View 190|Reply 0

[几何] 六边形对边平行 三线共点

[Copy link]

3226

Threads

7843

Posts

52

Reputation

Show all posts

hbghlyj posted 2022-4-30 03:52 |Read mode
旧电脑找到一个word文档(不知道原作者)

题 六边形 ABCDEF 三组对边互相平行, G,H,I,J,K,L 分别为六边中点,求证:GJ,HK,IL 三线共点。

连接 AD, BE, CF 。下面分两种情况讨论:

(1)AD,BE,CF 交于一点 O(见上图)

这时有

ΔAOBΔDOEΔBOCΔEOFΔDOCΔFOA

$\frac{\text{AB}}{\text{DE}} = \frac{\text{OB}}{\text{OE}} = \frac{\text{BC}}{\text{EF}} = \frac{\text{OC}}{\text{OF}} = \frac{\text{CD}}{\text{FA}} = \frac{\text{OD}}{\text{OA}} = \frac{\text{DE}}{\text{AB}} = \frac{\text{OE}}{\text{OB}} = \frac{\text{EF}}{\text{BC}} = \frac{\text{OF}}{\text{OC}} = \frac{\text{FA}}{\text{CD}} = \frac{\text{OA}}{\text{OD}}$

所以 AB = DEBC = EFCD = FA

可见 ABDEBCEFCDFA 都是以 O 为中心的平行四边形。

因为平行四边形对边中点连线必定通过平行四边形中心,所以 GJ,HK,IL 都通过 O 点,也就是说,GJ,HK,IL 三线共点。

(2)AD,BE,CF不交于一点,而是分别交于 P,Q,R 三点(见上图)。

由梯形性质可知,P 点在 GJ 上,Q 点在 IL 上,R 点在 HK 上。

GJQR 交于 SHKPQ 交于 TILRP 交于 U

因为 DJ = JE ,所以 $1 = \frac{S_{\Delta\text{PDJ}}}{S_{\Delta\text{PJE}}} = \frac{\frac{1}{2}\text{PD} \times \text{PJ} \times \sin\angle\text{DPJ}}{\frac{1}{2}\text{PE} \times \text{PJ} \times \sin\angle\text{EPJ}} = \frac{\text{PD} \times \sin\angle\text{DPJ}}{\text{PE} \times \sin\angle\text{EPJ}}$

同理,因为 AG = GB ,所以 $1 = \frac{S_{\Delta\text{AGP}}}{S_{\Delta\text{GBP}}} = \frac{\text{AP} \times \sin\angle\text{APG}}{\text{BP} \times \sin\angle\text{BPG}} = \frac{\text{AP} \times \sin\angle\text{DPJ}}{\text{BP} \times \sin\angle\text{EPJ}}$

所以 $\frac{\sin\angle\text{DPJ}}{\sin\angle\text{EPJ}} = \frac{\text{BP}}{\text{AP}} = \frac{\text{PE}}{\text{PD}} = \frac{BP + PE}{AP + PD} = \frac{\text{BE}}{\text{AD}}$

ΔPQSΔPSR 中,由正弦定理可知,有

$QS = PQ\frac{\sin\angle\text{QPS}}{\sin\angle\text{QSP}}$$SR = PQ\frac{\sin\angle\text{RPS}}{\sin\angle\text{PSR}}$

所以有

$\frac{\text{QS}}{\text{SR}} = \frac{\text{PQ}\frac{\sin\angle\text{QPS}}{\sin\angle\text{QSP}}}{\text{PR}\frac{\sin\angle\text{RPS}}{\sin\angle\text{PSR}}} = \frac{\text{PQ} \times \sin\angle\text{QPS}}{\text{RP} \times \sin\angle\text{RPS}} = \frac{\text{PQ}}{\text{RP}} \times \frac{\sin\angle\text{DPJ}}{\sin\angle\text{EPJ}} = \frac{\text{PQ}}{\text{RP}} \times \frac{\text{BE}}{\text{AD}}$

同理有

$\frac{\text{PT}}{\text{TQ}} = \frac{\text{RP}}{\text{QR}} \times \frac{\text{CF}}{\text{BE}}$$\frac{\text{RU}}{\text{UP}} = \frac{\text{QR}}{\text{PQ}} \times \frac{\text{AD}}{\text{CF}}$

可见必有

$\frac{\text{QS}}{\text{SR}} \times \frac{\text{PT}}{\text{TQ}} \times \frac{\text{RU}}{\text{UP}} = \frac{\text{PQ}}{\text{RP}} \times \frac{\text{BE}}{\text{AD}} \times \frac{\text{RP}}{\text{QR}} \times \frac{\text{CF}}{\text{BE}} \times \frac{\text{QR}}{\text{PQ}} \times \frac{\text{AD}}{\text{CF}} = 1$

所以由 Ceva(塞瓦)定理的逆定理Menelaus(梅内劳斯)定理可知 PS,RT,QU 三线共点,即 GJ,HK,IL 三线共点。

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-23 16:58 GMT+8

Powered by Discuz!

Processed in 0.012397 seconds, 25 queries