Forgot password?
 Register account
View 163|Reply 0

求$p,q$的关系使$x^3+px+q$的三个根成等腰直角三角形

[Copy link]

3158

Threads

7933

Posts

45

Reputation

Show all posts

hbghlyj posted 2022-4-30 04:37 |Read mode
来自一个旧的word文档

求p,q的关系,使x3 + px + q的三个根成等腰直角三角形.

解:令α,β,γ为三个根,令γ-α=(β-α)i,从$\left\{ \begin{matrix} \alpha + \beta + \gamma = 0 \\ \alpha\beta + \beta\gamma + \gamma\alpha = p \\ \alpha\beta\gamma = - q \\ \gamma - \alpha = (\beta - \alpha)i \\ \end{matrix} \right.\ $消去α,β,γ得27q2 = 50p3.具体地讲,消元的过程如下:

用α= − β − γ消去α,得$\left\{ \begin{matrix} \beta\gamma - (\beta + \gamma)^{2} = p \\ (\beta + \gamma)\beta\gamma = q \\ \beta + 2\gamma = (2\beta + \gamma)i \\ \end{matrix} \right.\ $.(β+2γ)2 + (2β+γ)2 = 05β2 + 5γ2 + 8βγ = 0.

令u=β+γ,v=βγ,得uv=q,v − u2 = p, 5u2 − 2v = 0,则$q = uv = \frac{5u^{3}}{2},p = \frac{5u^{2}}{2} - u^{2} = \frac{3u^{2}}{2}$$\left( \frac{2p}{3} \right)^{3} = u^{6} = \left( \frac{2q}{5} \right)^{2}$$\frac{8p^{3}}{27} = \frac{4q^{2}}{25}$50p3 = 27q2.

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | 快速注册

$\LaTeX$ formula tutorial

Mobile version

2025-6-8 06:58 GMT+8

Powered by Discuz!

Processed in 0.022050 second(s), 21 queries

× Quick Reply To Top Edit