Forgot password?
 Register account
View 226|Reply 0

[数论] $x^n+(1-x)^n$不可约,若$n$为素数或2的幂

[Copy link]

3158

Threads

7933

Posts

45

Reputation

Show all posts

hbghlyj posted 2022-5-2 02:44 |Read mode
$n$为素数或2的幂,证明$$x^n+(1-x)^n$$在$\Bbb Q$上不可约
math.stackexchange.com/questions/3144296/why- … ponents?noredirect=1

若$n$为奇素数,则$x^n+(1-x)^n=x^{n-1}g(1/x)$,$$g(x)=x^{n-1}-\binom{n}{1}x^{n-2}+\dots+\binom{n}{n-1}$$满足素数$n$的Eisenstein's criterion(所有的二项式系数都可以被 $n$ 整除,常数项$\binom n{n-1}=n$ 不能被 $n^2$ 整除)。

若$n>1$为2的幂,则$x^n+(1-x)^n=x^ng(1/x)$,$$g(x)=x^n-\binom{n}{1}x^{n-1}+\dots-\binom{n}{n-1}x+2.$$满足素数2的Eisenstein's criterion(所有这些二项式系数都是偶数,常数项$2$不能被$2^2$整除)。

Eisenstein's criterion:
• $p$ divides each $a_i$ for $0 ≤ i < n$,
• $p$ does not divide $a_n$, and
• $p^2$ does not divide $a_0$

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | 快速注册

$\LaTeX$ formula tutorial

Mobile version

2025-6-8 06:57 GMT+8

Powered by Discuz!

Processed in 0.057366 second(s), 21 queries

× Quick Reply To Top Edit