Forgot password
 Register account
View 366|Reply 7

[不等式] 不等式

[Copy link]

62

Threads

175

Posts

0

Reputation

Show all posts

nttz posted 2022-5-3 20:35 |Read mode
证明在a是一个不等于1的正数时
\[\frac{1+a^2+a^4+\cdots+a^{2n}}{a+a^3+a^5+\cdots+a^{2n-1}} > \frac{n+1}{n}\]

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2022-5-3 20:39
见《撸题集》P.183~184 题目 2.1.36

62

Threads

175

Posts

0

Reputation

Show all posts

original poster nttz posted 2022-5-3 20:49
回复 2# kuing
什么撸题集?这个是教材上题目

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2022-5-3 20:51
回复 3# nttz

《撸题集》是我写的电子书:forum.php?mod=viewthread&tid=3757

62

Threads

175

Posts

0

Reputation

Show all posts

original poster nttz posted 2022-5-3 20:56
回复 4# kuing
好牛啊

62

Threads

175

Posts

0

Reputation

Show all posts

original poster nttz posted 2022-5-3 21:25
回复 4# kuing QQ图片20220503212240.png
A1 成立用了基本不等式 a+1/a > 2
最后一步天马行空啥意思

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2022-5-3 21:50
回复 6# nttz

\[A_{n+1}=a+\frac 1a-\frac 1{A_n}\geqslant 2-\frac 1{A_n}>2-\frac 1{1+\frac 1n}=1+\frac 1{n+1}\]
咦?能发图了?

62

Threads

175

Posts

0

Reputation

Show all posts

original poster nttz posted 2022-5-4 07:56
回复 7# kuing
是的

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 14:06 GMT+8

Powered by Discuz!

Processed in 0.022162 seconds, 25 queries