Forgot password?
 Register account
View 482|Reply 5

[几何] 正方形中求阴影面积(小学奥数吧)——数据需修正

[Copy link]

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2022-5-4 21:47 |Read mode
Last edited by isee 2022-5-5 12:48如图正方形中,$CG\perp BF$,数据如图,求红色阴影部分面积和. (个人认为的答案在图片描述里)

12

12

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2022-5-4 22:11
QQ截图20220504221556.png
那两块的面积都是 `S_3` 是因为由垂直有 `\S{ABF}=\S{BCG}`,于是
\[S_1+S_2+2S_3+12=S_{ABCD}=2\S{FBC}=2(S_3+12),\]
即 `S_1+S_2=12`。

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2022-5-4 22:22
回复 1# isee

怎么用了我加字母之后的图

54

Threads

959

Posts

9977

Credits

Credits
9977

Show all posts

乌贼 Posted 2022-5-4 23:49
如图: 211.png
$ BM\px CF,MN\px CE $\[
\ S_{\triangle MFN}=\dfrac{1}{2}S_{BAFL}=S_{AFNG}\riff S_{\triangle MAK}=S_{\triangle NGK} \]又平行四边形$ KNPG $中\[S_{\triangle MAK}= S_{\triangle NKG}=\dfrac{1}{2}S_{KNPG}=S_{KHEG} \]有\[ S_{\triangle CDF}+S_{\triangle BED}=S_{\triangle BAM}+S_{\triangle BED}=S_{\triangle BHM}=S_{\triangle CEF}=12 \]

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2022-5-5 12:40
但是,EF/EC=2/3时,图形不存在,知乎的 xiaomm8341 说。

也是的,若记GE=x,BE=y,则有
$y^2=6x,6+x=y+4$此方程组无实数根,从而EF/EC取不到2/3.

即数据需修改

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2022-5-7 02:51
回复 6# isee

还真没去考虑这个问题
去掉 4、6,直接给出中间那块的面积即可

Mobile version|Discuz Math Forum

2025-5-31 10:45 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit