|
kuing
Posted 2022-5-6 17:15
记 `\bm a=\vv{AP}`, `\bm b=\vv{DP}`,由条件得
\begin{align*}
\vv{BE}\cdot\vv{CF}&=\lambda\mu\bigl(\vv{BA}+\bm a\bigr)\cdot\bigl(\vv{CD}+\bm b\bigr)\\
&=\lambda\mu(1+\bm a\cdot\bm b),
\end{align*}
由 `\abs{MN}=1/2` 得
\begin{align*}
1&=4\abs{MN}^2\\
&=\bigl(\vv{BE}+\vv{CF}\bigr)^2\\
&=\lambda^2(1+\bm a^2)+\mu^2(1+\bm b^2)+2\vv{BE}\cdot\vv{CF}\\
&\geqslant2\lambda\mu\sqrt{(1+\bm a^2)(1+\bm b^2)}+2\vv{BE}\cdot\vv{CF}\\
&=2\vv{BE}\cdot\vv{CF}\frac{\sqrt{(1+\bm a^2)(1+\bm b^2)}}{1+\bm a\cdot\bm b}+2\vv{BE}\cdot\vv{CF},
\end{align*}
显然 `\bm a\cdot\bm b\in[-1/4,0]`,根号里面配个方,有
\begin{align*}
\frac{\sqrt{(1+\bm a^2)(1+\bm b^2)}}{1+\bm a\cdot\bm b}&=\sqrt{\frac{(1+\bm a\cdot\bm b)^2+(\bm a-\bm b)^2}{(1+\bm a\cdot\bm b)^2}}\\
&=\sqrt{1+\frac1{(1+\bm a\cdot\bm b)^2}}\\
&\geqslant\sqrt2,
\end{align*}
代入上面,即得
\[1\geqslant2\sqrt2\vv{BE}\cdot\vv{CF}+2\vv{BE}\cdot\vv{CF}\riff\vv{BE}\cdot\vv{CF}\leqslant\frac{\sqrt2-1}2,\]
当 `P` 与 `A` 重合且 `\lambda=\sqrt2\mu` 时取等,代入可以算出具体的 `\lambda`, `\mu`,懒得码了。 |
|