Forgot password?
 Register account
View 297|Reply 4

[不等式] 设a,b,c>0,$\frac{1}{a+b+1}+\frac{1}{b+c+1}+\frac{1}{c+a+1}=1$

[Copy link]

136

Threads

741

Posts

5358

Credits

Credits
5358

Show all posts

走走看看 Posted 2022-5-8 21:38 |Read mode
设a,b,c>0,$\frac{1}{a+b+1}+\frac{1}{b+c+1}+\frac{1}{c+a+1}=1$

求证:$ a+b+c\ge ab+bc+ac $

136

Threads

741

Posts

5358

Credits

Credits
5358

Show all posts

 Author| 走走看看 Posted 2022-5-8 22:52
回复 1# 走走看看

小猿搜题用切比雪夫不等式,但我认为它的写法不对。

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2022-5-8 23:11
回复 2# 走走看看

发上来瞧瞧

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2022-5-8 23:17
用 CS 即可,有
\begin{align*}
1&=\sum\frac1{a+b+1}\\
&=3-\sum\frac{a+b}{a+b+1}\\
&=3-\sum\frac{(a+b)^2}{(a+b)^2+a+b}\\
&\leqslant3-\frac{4(a+b+c)^2}{\sum(a+b)^2+2(a+b+c)},
\end{align*}
得到
\[2(a+b+c)^2\leqslant\sum(a+b)^2+2(a+b+c),\]
展开即是待证不等式。

Rate

Number of participants 1威望 +1 Collapse Reason
走走看看 + 1 强!

View Rating Log

136

Threads

741

Posts

5358

Credits

Credits
5358

Show all posts

 Author| 走走看看 Posted 2022-5-9 09:04
Last edited by 走走看看 2022-5-10 17:55回复 3# kuing




仔细看,好像没有问题了。

Mobile version|Discuz Math Forum

2025-5-31 10:39 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit