Forgot password?
 Register account
View 288|Reply 0

[几何] 15度直角三角形

[Copy link]

9

Threads

38

Posts

6

Reputation

Show all posts

player1703 posted 2022-5-16 01:29 |Read mode
Last edited by player1703 2022-5-16 12:20 15du.png

$\Rtt ABC$中$\angle A=90\du$, $\angle C=15\du$. $D$为直角边$AC$上一点且$AB=AD$. $\angle CDE = 30
\du$. 求证$DE=AD$.

当然我求助的是纯几何解法, 三角解法就简单了在$\triangle BDE$内用正弦定理得$\frac{DE}{\sin 30\du} = \frac{\sqrt{2}AD}{\sin 45\du}$

更新: 突然想到了直接把上面正弦定理的解法翻译成平几算几何法不?
过$D$作$DF\perp AB$于$F$, 取$BD$中点$G$连接$AG$. $DF=\frac{1}{2}BD=AG$ 所以等腰直角三角形$DFE$, $AGD$全等.

其实上面是我改的原来的题条件是$E$是$BC$中点我的解法如下:
15du2.png
连接$AE$, 有$AE=BE$.以$AB$为底边向上作正三角形$AFB$. 显然$EF\perp AB$且$EF$平分$\angle AEB$. 故$EF\px DA$, 且$EF=AF=AB=AD$. 故ADEF是菱形.

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | 快速注册

$\LaTeX$ formula tutorial

Mobile version

2025-6-8 05:11 GMT+8

Powered by Discuz!

Processed in 0.024331 second(s), 25 queries

× Quick Reply To Top Edit