458
951
9832
Show all posts
Bump
413
1431
110K
25
1011
挺难,似乎没见过,把$a_1=?$打上,能说明题目来源最好了. 第一个,有n+1以上个1或无限.似乎符合 \[a_n=\sqrt{1+\sqrt{1+\sqrt{1+\sqrt{1+....}}}}\] ... \[\color{red}{\varphi=\sqrt{1+\sqrt{1+\sqrt{1+\sqrt{1+....}}}}=\frac{\sqrt{5}+1}{2}}\] \[\color{red}{\Phi=\Phi^{-1}-1=\varphi^{-1}=\varphi-1=\frac{1}{\sqrt{1+\sqrt{1+\sqrt{1+\sqrt{1+....}}}}}=\frac{\sqrt{5}-1}{2}}\] realnumber 发表于 2013-11-16 09:24
770
4692
310K
Mobile version|Discuz Math Forum
2025-5-31 10:30 GMT+8
Powered by Discuz!