Forgot password?
 Register account
View 262|Reply 4

[几何] 三角形中套一个直角求线段长

[Copy link]

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2022-5-16 19:33 |Read mode
如图,$\triangle ABC$内一点$P$满足$PB\bot PC,AC=BP=2$. 若$AB=\sqrt 5,\sin\angle ACP=\frac 1{10}$,求$AP$的长.
ap.jpg
isee=freeMaths@知乎

25

Threads

1011

Posts

110K

Credits

Credits
12665

Show all posts

战巡 Posted 2022-5-16 19:58
正弦定理可得
\[\frac{AP}{\sin(\angle ACP)}=\frac{AC}{\sin(\angle APC)}\]
然后显然$\angle APB=360\du-90\du-\angle APC$,就有$\sin(\angle APC)=-\cos(\angle APB)$,然后
\[\frac{AP\sin(\angle APC)}{AC}=\sin(\angle APC)=-\cos(\angle APB)=-\frac{AP^2+BP^2-AB^2}{2AP\cdot BP}\]
\[\frac{AP}{20}=-\frac{AP^2+4-5}{4AP}\]
\[AP=\sqrt{\frac{5}{6}}\]

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2022-5-16 20:51
Last edited by isee 2022-5-16 22:07
战巡 发表于 2022-5-16 19:58
正弦定理可得
\[\frac{AP}{\sin(\angle ACP)}=\frac{AC}{\sin(\angle APC)}\]
然后显然$\angle APB=360\du- ...
哎呀,好久不见你这头像了,好亲切,感谢战版


======
不过,结果计算有误
isee=freeMaths@知乎

13

Threads

907

Posts

110K

Credits

Credits
12299

Show all posts

色k Posted 2022-5-16 21:13
isee 发表于 2022-5-16 20:51
哎呀,好久不见你这头像了,好亲切,感谢战版
旧论坛不是这个头像吗?
这名字我喜欢

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2022-5-16 22:08
色k 发表于 2022-5-16 21:13
旧论坛不是这个头像吗?
可能自动隐藏了的原因……
isee=freeMaths@知乎

Mobile version|Discuz Math Forum

2025-5-31 11:06 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit