|
en.wikipedia.org/wiki/Methods_of_computing_square_roots
pcjohnson.net/312/Sqrt.pdf
pcjohnson.net/312/SqrtPresentation.pdf
1 Greek Method $\forall a \in \mathbb{Q}$ such that $a>1$, the sequences $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ both converge to $\sqrt{a}$ when defined as:
\begin{aligned}
&a_{i}=a \\
&b_{i}=1 \\
&a_{n+1}=\frac{a_{n}+b_{n}}{2} \\
&b_{n+1}=\frac{2 a_{n} b_{n}}{a_{n}+b_{n}}
\end{aligned}
1.1 The Product is Always $a$ $$\forall n \in \mathbb{N}, a_{n} b_{n}=a$$Base Case for Proof by Induction
$n=1$: $a_{1} b_{1}=a \times 1=a$
Induction Step
Assume $a_{k} b_{k}=a$, then
$a_{k+1} b_{k+1}=\left(\frac{a_{k}+b_{k}}{2}\right)\left(\frac{2 a_{k} b_{k}}{a_{k}+b_{k}}\right)=a_{k} b_{k}=a$
1.2 $a_{n}$ is Always Greater Than $b_{n}$ $$\forall n \in \mathbb{N}, a_{n} \geq b_{n}$$\begin{gathered}
\left(a_{k}-b_{k}\right)^{2}>0 \\
a_{k}^{2}-2 a_{k} b_{k}+b_{k}^{2}>0 \\
a_{k}^{2}+2 a_{k} b_{k}+b_{k}^{2}>4 a_{k} b_{k} \\
\left(a_{k}+b_{k}\right)^{2}>4 a b_{k} \\
\frac{a_{k}+b_{k}}{2}>\frac{2 a_{k} b_{k}}{a_{k}+b_{k}} \\
a_{k+1}>b_{k+1}
\end{gathered}
1.3 $\left\{a_{n}\right\}$ are $\left\{b_{n}\right\}$ Monotone
$\left\{a_{n}\right\}$ is Strictly Decreasing
Since $a_{n}>b_{n} \forall n \in \mathbb{N}$ :
\begin{gathered}
a_{n}>b_{n}\\
2 a_{n}>a_{n}+b_{n}\\
a_{n}>\frac{a_{n}+b_{n}}{2}\\
a_{n}>a_{n+1}
\end{gathered}
$\left\{b_{n}\right\}$ is Strictly Increasing
Since $a_{n}>b_{n} \forall n \in \mathbb{N}$ :
\begin{gathered}
b_{n}<a_{n} \\
b_{n}^{2}<a_{n} b_{n} \\
a_{n} b_{n}+b_{n}^{2}<2 a_{n} b_{n} \\
b_{n}\left(a_{n}+b_{n}\right)<2 a_{n} b_{n}\\
b_{n}<\frac{2 a_{n} b_{n}}{a_{n}+b_{n}} \\ b_{n}<b_{n+1}
\end{gathered}
1.4 $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ are Cauchy
We know $a_{n}>b_{n}$ and $a_{n} b_{n}=a$, so:
\begin{gathered}
a_{n}>b_{n} \\
a_{n}>\frac{a}{a_{n}} \\
a_{n}^{2}>a \\
a_{n}>\sqrt{a}
\end{gathered}Similarly, $b_{n}<\sqrt{a}$ for all $n$. Thus $\left\{a_{n}\right\}$ is monotone decreasing and bounded below and $\left\{b_{n}\right\}$ is monotone increasing and bounded above. Both sequences must be Cauchy, and since $\mathbb{R}$ is complete, both sequences must converge.
1.5 $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ Converge to $\sqrt{a}$
$\left\{a_{n}^{2}\right\}$ Converges to $a$
Since $\left\{a_{n}\right\}$ is a Cauchy sequence, $\forall \varepsilon>0, \exists N_{1} \in \mathbb{N}$ such that $\forall n, m>N_{1},\left|a_{n}-a_{m}\right|<\frac{1}{2 a} \varepsilon$. Also, $\left\{a_{n}\right\}$ is strictly decreasing, so if $m>n, a_{m}<a_{n}$ and therefore $\left|a_{n}-a_{m}\right|=a_{n}-a_{m}$. From this:
\begin{aligned}
\frac{1}{2 a} \varepsilon &>a_{n}-a_{n+1} \\
\frac{1}{2 a} \varepsilon &>a_{n}-\frac{a_{n}+b_{n}}{2} \\
\frac{1}{2 a} \varepsilon &>\frac{2 a_{n}}{2}-\frac{a_{n}+\frac{a}{a_{n}}}{2} \\
\frac{1}{2 a} \varepsilon &>\frac{a_n-\frac{a}{a_{n}}}{2} \\
\varepsilon &>a\left(a_n-\frac{a}{a_{n}}\right) \\
\varepsilon &>\frac{a}{a_{n}}\left(a_{n}^2-a\right) \\
\lim _{n \rightarrow \infty} a_{n}^{2} &=a
\end{aligned}
$\left\{b_{n}^{2}\right\}$ Converges to $a$
Since $\left\{b_{n}\right\}$ is a Cauchy sequence, $\forall \varepsilon>0, \exists N_{2} \in \mathbb{N}$ such that $\forall n, m>N_{2},\left|b_{n}-b_{m}\right|<\varepsilon$. Also, $\left\{b_{n}\right\}$ is strictly increasing, so if $m>n, b_{m}>b_{n}$ and therefore $\left|b_{n}-b_{m}\right|=b_{m}-b_{n}$. From this:
\begin{aligned}
\varepsilon &>b_{n+1}-b_{n} \\
\varepsilon &>\frac{2 a_{n} b_{n}}{a_{n}+b_{n}}-b_{n} \\
\varepsilon &>\frac{2 \frac{a}{b_{n}} b_{n}}{\frac{a}{b_{n}}+b_{n}}-b_{n} \\
\varepsilon &>\frac{2 a b_{n}}{a+b_{n}^{2}}-\frac{\left(a+b_{n}^{2}\right) b_{n}}{a+b_{n}^{2}} \\
\varepsilon &>\frac{\left(a-b_{n}^{2}\right) b_{n}}{a+b_{n}^{2}}
\end{aligned}Since $b_{n}$ is increasing and bounded above, it does not converge to zero nor does $b_{n}^{2}$ diverge to infinity. Also, $a$ is constant so $\left(a-b_{n}^{2}\right)$ must converge to zero, which means:
$$\lim _{n \rightarrow \infty} b_{n}^{2}=a$$
$\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ Converge to $\sqrt{a}$
Since $\lim _{n \rightarrow \infty} a_{n}^{2}=\lim _{n \rightarrow \infty} b_{n}^{2}=a$, we have shown that the squares of both sequences converge to $a$, and thus each sequence must converge to $\sqrt{a}$.
1.6 Alternate Proof that $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} b_{n}=\sqrt{a}$
Since $\left\{a_{n}\right\}$ is a Cauchy sequence, $\forall \varepsilon>0, \exists N \in \mathbb{N}$ such that $\forall n, m>N,\left|a_{n}-a_{m}\right|<\frac{1}{2} \varepsilon$. The sequence $\left\{a_{n}\right\}$ is monotone decreasing so if $m>n, a_{m}<a_{n}$ and therefore $\left|a_{n}-a_{m}\right|=a_{n}-a_{m}$. Thus:\begin{aligned}
\frac{1}{2} \varepsilon &>a_{n}-a_{n+1} \\
\frac{1}{2} \varepsilon &>a_{n}-\frac{a_{n}+b_{n}}{2} \\
\varepsilon &>a_{n}-b_{n} \\
\lim _{n \rightarrow \infty} a_{n} &=\lim _{n \rightarrow \infty} b_{n}
\end{aligned}Since $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} b_{n}$, and $a_{n} b_{n}=a$,
\begin{gathered}
\lim _{n \rightarrow \infty} a_{n}^{2}=\lim _{n \rightarrow \infty} b_{n}^{2}=\lim _{n \rightarrow \infty} a_{n} b_{n}=a \\
\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} b_{n}=\sqrt{a}
\end{gathered}
|
|