Forgot password?
 Register account
View 312|Reply 3

[不等式] 求最大值$x+\sqrt{y}+\sqrt[3]{z}$

[Copy link]

413

Threads

1431

Posts

110K

Credits

Credits
11099

Show all posts

realnumber Posted 2022-5-18 08:21 |Read mode
Last edited by realnumber 2022-5-18 08:44已知:$x,y,z\in R^+,x+y+z=1$,求$x+\sqrt{y}+\sqrt[3]{z}$的最大值.

25

Threads

1011

Posts

110K

Credits

Credits
12665

Show all posts

战巡 Posted 2022-5-18 10:38
\[x+\sqrt{y}+\sqrt[3]{z}=1-y+\sqrt{y}-z+\sqrt[3]{z}\]
其中
\[-y+\sqrt{y}\le \frac{1}{4}\]
$y=\frac{1}{4}$时取等
\[-z+\sqrt[3]{z}\le \frac{2}{3\sqrt{3}}\]
$z=\frac{1}{3\sqrt{3}}$时取等
于是
\[x+\sqrt{y}+\sqrt[3]{z}\le \frac{5}{4}+\frac{2}{3\sqrt{3}}\]
在$x=1-\frac{1}{4}-\frac{1}{3\sqrt{3}}, y=\frac{1}{4},z=\frac{1}{3\sqrt{3}}$时取等

Comment

谢谢,没想到  Posted 2022-5-18 11:46

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2022-5-18 14:12
`\sqrt y\le y+\dfrac14`

`\sqrt[3]z\le z+\dfrac1{\sqrt{27}}+\dfrac1{\sqrt{27}}`

Mobile version|Discuz Math Forum

2025-5-31 10:49 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit