Forgot password
 Register account
View 251|Reply 2

[不等式] 已知x+y+z=1,有没别的办法

[Copy link]

412

Threads

1432

Posts

3

Reputation

Show all posts

realnumber posted 2022-5-21 21:00 |Read mode
已知:$x+y+z=1$,求$\sqrt{9+x^2}+\sqrt{4+y^2}+\sqrt{1+z^2}$的最小值.


我是这样解的$(9+x^2)(k^2+1)\ge  (3k+x)^2 $,得到$\sqrt{9+x^2}\ge \frac{3k+x}{\sqrt{k^2+1}}$,在$x=\frac{3}{k}$时取等.
类似有$\sqrt{4+y^2}\ge \frac{2k+y}{\sqrt{k^2+1}}$,在$y=\frac{2}{k}$时取等;
$\sqrt{1+z^2}\ge \frac{k+z}{\sqrt{k^2+1}}$,在$x=\frac{1}{k}$时取等.
这样在$k=6,x=\frac{1}{2},y=\frac{1}{3},z=\frac{1}{6}$时,原式取到最小值.

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2022-5-21 21:28
$\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\ge\sqrt{(a+c)^2+(b+d)^2}$

Comment

谢谢,这个快  posted 2022-5-21 22:21

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 13:56 GMT+8

Powered by Discuz!

Processed in 0.011338 seconds, 23 queries