|
战巡
Posted 2022-5-21 22:53
这其实就是卡西尼性质(Cassini Identity)的推论,既对斐波那契数列,有
\[F_{n-1}F_{n+1}-F_n^2=(-1)^n\]
这个并不难证明
\[F_nF_{n+2}-F_{n+1}^2=F_n(F_n+F_{n+1})-F_{n+1}^2=F_n^2+F_{n+1}(F_n-F_{n+1})\]
\[=F_n^2-F_{n+1}F_{n-1}=-(F_{n+1}F_{n-1}-F_n^2)\]
这说明
\[F_{n+1}F_{n-1}-F_{n}^2=(-1)^n[F_0F_2-F_1^2]=(-1)^n\]
于是
\[F_nF_{n+3}-F_{n+1}F_{n+2}=F_n(F_{n+1}+F_{n+2})-F_{n+1}F_{n+2}\]
\[=F_nF_{n+1}+F_nF_{n+2}-F_{n+1}(F_{n}+F_{n+1})\]
\[=F_nF_{n+2}-F_{n+1}^2=(-1)^{n+1}\] |
|