Forgot password?
 Register account
View 285|Reply 8

[数列] 任何i,j,k,l 如果 i+l = j+k、 就有 |fi*fl - fj*fk|是定值

[Copy link]

41

Threads

60

Posts

563

Credits

Credits
563

Show all posts

baxiannv Posted 2022-5-21 22:15 From mobile phone |Read mode
任何i,j,k,l 如果 i+l = j+k、 就有 |fi*fl - fj*fk|是定值。 这个命题正确吗?为什么?

413

Threads

1431

Posts

110K

Credits

Credits
11100

Show all posts

realnumber Posted 2022-5-22 08:21
区几组特殊值,就不一样

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2022-5-22 17:48
这啥问题啊,f 是什么?

413

Threads

1431

Posts

110K

Credits

Credits
11100

Show all posts

realnumber Posted 2022-5-22 21:37
kuing 发表于 2022-5-22 17:48
这啥问题啊,f 是什么?
我也是猜他在说兔子数列,1,1,2,3,...

41

Threads

60

Posts

563

Credits

Credits
563

Show all posts

 Author| baxiannv Posted 2022-5-23 09:46
realnumber 发表于 2022-5-22 08:21
区几组特殊值,就不一样
哪几组特殊值不一样啊

413

Threads

1431

Posts

110K

Credits

Credits
11100

Show all posts

realnumber Posted 2022-5-23 12:10
就$a_1=1,a_2=1,a_3=2,a_4=3,a_5=5,a_6=8$
i=1,l=6,j=2,k=5或j=3,k=4就不一样啊

41

Threads

60

Posts

563

Credits

Credits
563

Show all posts

 Author| baxiannv Posted 2022-5-23 20:53 From mobile phone
Last edited by hbghlyj 2025-3-9 05:53
realnumber 发表于 2022-5-23 12:10
就$a_1=1,a_2=1,a_3=2,a_4=3,a_5=5,a_6=8$
i=1,l=6,j=2,k=5或j=3,k=4就不一样啊
可是这第三条
Fibonacci sequence $a_{n+1}a_{n-1}-a_n^2=(-1)^n$

Comment

不太明白你的意思  Posted 2022-5-24 06:57

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2023-4-24 04:30
baxiannv 发表于 2022-5-23 13:53
可是这第三条
Fibonacci sequence $a_{n+1}a_{n-1}-a_n^2=(-1)^n$
math.stackexchange.com/questions/2822364
Let $$A_{n}=\begin{pmatrix}a_{n+1}&a_{n}\\a_{n+2}&a_{n+1}\end{pmatrix}$$
Then show that $$A_{n+1}=\begin{pmatrix}0&1\\ 1&1\end{pmatrix}A_n$$
using the recurrence relation.
Then show $$\det A_{n+1} = -\det A_n\tag{1}$$
Finally, the only induction you need is to show, using (1), that $$\det A_{n}=(-1)^{n-1}\det A_1$$

Mobile version|Discuz Math Forum

2025-5-31 11:01 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit