math.stackexchange.com/questions/2822364
Let $$A_{n}=\begin{pmatrix}a_{n+1}&a_{n}\\a_{n+2}&a_{n+1}\end{pmatrix}$$
Then show that $$A_{n+1}=\begin{pmatrix}0&1\\ 1&1\end{pmatrix}A_n$$
using the recurrence relation.
Then show $$\det A_{n+1} = -\det A_n\tag{1}$$
Finally, the only induction you need is to show, using (1), that $$\det A_{n}=(-1)^{n-1}\det A_1$$