Forgot password
 Register account
View 380|Reply 3

[几何] AP在△ABC角A平分线上且满足AB : AC=BD : CE,求 P 点位置。

[Copy link]

126

Threads

430

Posts

1

Reputation

Show all posts

TSC999 posted 2022-5-27 22:30 |Read mode
P 点在 △ABC 角 A 平分线上,CP 和 BP 的延长线交 AB、AC 于 E、D,如果 AB/AC = BD/CE,求作符合要求的 P 点 (A 点除外)。

求 P 点位置.png

24

Threads

1014

Posts

46

Reputation

Show all posts

战巡 posted 2022-5-27 22:54
Last edited by 战巡 2022-5-29 20:04在这种情况下,按正弦定理,会有
\[\frac{\sin(\angle A)}{BD}=\frac{\sin(\angle ADB)}{AB}\]
\[\frac{\sin(\angle A)}{CE}=\frac{\sin(\angle AEC)}{AC}\]

\[\frac{BD}{CE}=\frac{AB}{AC}\cdot\frac{\sin(\angle AEC)}{\sin(\angle ADB)}\]
既然$\frac{BD}{CE}=\frac{AB}{AC}$,那么就有
\[\sin(\angle AEC)=\sin(\angle ADB)\]

这里两种情况,第一种是$\angle AEC=\angle ADB$,此时会有$\angle ABD=\angle ACE$,进而有
\[\Delta APB\cong\Delta APC\]
也就有$AB=AC$了,这种条件不大现实,只有特殊情况能成立,因此不考虑了

第二种是$\angle AEC+\angle ADB=180\du$,此时有$A,E,P,D$共圆,也就有$\angle BPC=180\du-\angle A$
这个好办,作$A$关于$BC$的对称点$A'$,然后作$\Delta A'BC$外接圆,与$AM$交于$P$即可

Rate

Number of participants 1威望 +2 Collapse Reason
TSC999 + 2 很给力!

View Rating Log

126

Threads

430

Posts

1

Reputation

Show all posts

original poster TSC999 posted 2022-5-28 11:15
战巡 发表于 2022-5-27 22:54
在这种情况下,按正弦定理,会有
\[\frac{\sin(\angle A)}{BD}=\frac{\sin(\angle ADB)}{AB}\]
\[\frac{\si ...
楼上作图完全正确!

P 点作图.png

56

Threads

984

Posts

41

Reputation

Show all posts

乌贼 posted 2022-5-29 03:15
211.png
熟悉的圆中$ \triangle AED $,$ P $在圆上且$ \angle EAP=\angle DAP $,$ AE $交$ DP $于$ B $,$ AD $交$ EP $于$ C $。则有\[ \triangle ACE\sim \triangle ECD\riff \dfrac{AC}{EC}=\dfrac{AP}{ED} \]\[ \triangle ABP\sim \angle DBE\riff \dfrac{AB}{DB}=\dfrac{AP}{DE} \]即有\[ \dfrac{AC}{AB}=\dfrac{CE}{DB} \]所以\[ \angle BAC=\angle DPC \]作平行四边形$ ABGC $则$ \triangle BCG $外接圆与$ AM $的交点即为所求$ P $点。

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 14:51 GMT+8

Powered by Discuz!

Processed in 0.014729 seconds, 27 queries