Forgot password
 Register account
View 309|Reply 5

[不等式] 这个不等式可以俩边同时放缩吗

[Copy link]

41

Threads

60

Posts

0

Reputation

Show all posts

baxiannv posted 2022-5-28 16:35 from mobile |Read mode
Last edited by hbghlyj 2025-3-9 06:03$\begin{aligned} & f(x)=e^x-\frac{x}{2} \\ & \text { 证明: } f(x)>\frac{3}{2} \ln x-\frac{1}{2} x^2+2 \\ & \text { 即 } e^x-\frac{x}{2}>\frac{3}{2} \ln x-\frac{1}{2} x^2+2\end{aligned}$


两边同时放缩可以吗?

\[
x+1-\frac{x}{2} \geqslant \frac{3}{2}(x-1)-\frac{x^2}{2}+2
\]

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2022-5-28 18:10
想知道可不可以,那你算一下最后那个不等式是不是成立不就知道了吗?就再前进一步而已,算一下用不了半分钟,就不能多思考思考再提问吗?

41

Threads

60

Posts

0

Reputation

Show all posts

original poster baxiannv posted 2022-5-28 18:24 from mobile
kuing 发表于 2022-5-28 18:10
想知道可不可以,那你算一下最后那个不等式是不是成立不就知道了吗?就再前进一步而已,算一下用不了半分钟 ...
我都搞了半小时不止了
群里有人说定义域变了
有人说放过头了
还有人说变号了
还有人说只能一边放缩

41

Threads

60

Posts

0

Reputation

Show all posts

original poster baxiannv posted 2022-5-28 20:59 from mobile
题目要证的是大于,可是我最后结果可以等于怎么办,(0,1)有交点)

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2022-5-28 21:52
baxiannv 发表于 2022-5-28 18:24
我都搞了半小时不止了
群里有人说定义域变了
有人说放过头了
`\begin{aligned}
&x+1-\dfrac x2\ge\dfrac32(x-1)-\dfrac{x^2}2+2\\
\iff&\dfrac{x^2}2-x+\dfrac12\ge0\\
\iff&\dfrac12(x-1)^2\ge0
\end{aligned}`
就这需要半分钟?
至于最后可以等于这个不要紧,因为定义域是 x>0,所以 `e^x>1+x`,也就是左边放缩的时候是大于的,那么原不等式也是大于,没问题。

41

Threads

60

Posts

0

Reputation

Show all posts

original poster baxiannv posted 2022-5-28 22:11 from mobile
kuing 发表于 2022-5-28 21:52
`\begin{aligned}
&x+1-\dfrac x2\ge\dfrac32(x-1)-\dfrac{x^2}2+2\\
\iff&\dfrac{x^2}2-x+\dfrac12\ge0\\ ...
⊙∀⊙!
群里有个人一直说我放缩之后改变了x的定义域 x可以负数

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 13:55 GMT+8

Powered by Discuz!

Processed in 0.014006 seconds, 23 queries