Forgot password?
 Register account
View 344|Reply 8

[不等式] x、y、z均为正实数,$x^5+y^5+z^5=3$

[Copy link]

136

Threads

741

Posts

5358

Credits

Credits
5358

Show all posts

走走看看 Posted 2022-5-30 09:45 |Read mode
Last edited by 走走看看 2022-5-30 11:09x、y、z均为正实数,$x^5+y^5+z^5=3$,求证:$ \frac{x^4}{y^3}+\frac{y^4}{z^3}+\frac{z^4}{x^3}\ge3$。

136

Threads

741

Posts

5358

Credits

Credits
5358

Show all posts

 Author| 走走看看 Posted 2022-5-30 15:41

这道题,有一个参考答案,挺费事的。

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2022-5-30 17:13
等价于
\[\frac{x^4}{y^3}+\frac{y^4}{z^3}+\frac{z^4}{x^3}\geqslant3\cdot\sqrt[5]{\frac{x^5+y^5+z^5}3},\]
两边五次方展开,开挂配系数,等价于
\begin{align*}
&\sum\biggl(\frac{x^{20}}{y^{15}}+5\frac{x^{16}}{y^8z^3}+5\frac{x^4y^{13}}{z^{12}}+10\frac{x^{12}}{yz^6}+30\frac{x^2z^5}{y^2}\\
&+\frac{1525}{111}\frac{x^9z}{y^5}+\frac{695}{111}\frac{xy^9}{z^5}+\frac{425}{111}\frac{x^8y^6}{z^9}+\frac{685}{111}\frac{y^8z^6}{x^9}\biggr)\geqslant81\sum x^5,
\end{align*}
左边括号里的系数和为 `81`,由均值,有
\begin{align*}
\LHS\geqslant{}&81\sum\Biggl[\frac{x^{20}}{y^{15}}\left( \frac{x^{16}}{y^8z^3} \right)^5\left( \frac{x^4y^{13}}{z^{12}} \right)^5\left( \frac{x^{12}}{yz^6} \right)^{10}\left( \frac{x^2z^5}{y^2} \right)^{30}\\
&\cdot\left( \frac{x^9z}{y^5} \right)^{1525/111}\left( \frac{xy^9}{z^5} \right)^{695/111}\left( \frac{x^8y^6}{z^9} \right)^{425/111}\left( \frac{y^8z^6}{x^9} \right)^{685/111}\Biggr]^{1/81}\\
={}&81\sum x^5.
\end{align*}

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2022-5-30 17:33
不知右边的次数最高可以是多少呢?

现在次数是 5 时成立,而 `\sum x^4/y^3\geqslant3x` 是不成立的,这说明次数肯定不能无穷大。

开挂画图找反例,竟然直到 35 次才找到反例……设
\[f(x,y,z)=\frac{x^4}{y^3}+\frac{y^4}{z^3}+\frac{z^4}{x^3}-3\cdot\sqrt[{35}]{\frac{x^{35}+y^{35}+z^{35}}3},\]
则 `f(1.05,1,1)\approx-0.00042`。

136

Threads

741

Posts

5358

Credits

Credits
5358

Show all posts

 Author| 走走看看 Posted 2022-5-30 21:33
kuing 发表于 2022-5-30 17:13
等价于
\[\frac{x^4}{y^3}+\frac{y^4}{z^3}+\frac{z^4}{x^3}\geqslant3\cdot\sqrt[5]{\frac{x^5+y^5+z^5}3} ...

Kuing总是办法多,佩服!

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2022-5-30 21:37
走走看看 发表于 2022-5-30 21:33
Kuing总是办法多,佩服!
你看到的参考答案能不能贴一下

136

Threads

741

Posts

5358

Credits

Credits
5358

Show all posts

 Author| 走走看看 Posted 2022-5-30 22:41
Last edited by hbghlyj 2025-3-17 01:03
kuing 发表于 2022-5-30 21:37
你看到的参考答案能不能贴一下
证明,注意到:$\left(x^5+y^5+z^5\right)^2=x^{30}+2 x^5 y^5+y^{10}+2 y^5 z^5+z^{10}+2 z^5 x^5=9$
由这个形式,我们利用 AM-GM 不等式,可得
\[
10 \cdot \frac{x^4}{y^3}+6 x^5 y^5+3 x^{30}=\underbrace{\frac{x^4}{y^3}+\cdots+\frac{x^4}{y^3}}_{50}+\underbrace{x^5 y^5+\cdots+x^5 y^5}_6+x^{10}+x^{30}+x^{10} \geq 19 x^{\frac{100}{10}}
\]
类似地,可得
\[
\begin{aligned}
& 10 \cdot \frac{y^4}{z^3}+6 y^3 z^9+3 y^{10} \geq 19 y^{\frac{190}{19}} \\
& 10 \cdot \frac{z^4}{x^3}+6 z^3 x^3+3 z^{10} \geq 19 z^{\frac{19}{19}}
\end{aligned}
\]
将上述三个不等式相加,我们有
\[
10\left(\frac{x^4}{y^3}+\frac{y^4}{z^3}+\frac{z^4}{x^3}\right)+3\left(x^4+y'+z^2\right)^2 \geq 19\left(x^{\frac{100}{10}}+y^{\frac{100}{10}}+z^{\frac{190}{10}}\right)
\]
于是,只需证明下列不等式 $x^{\frac{10}{19}}+y^{\frac{100}{19}}+z^{\frac{100}{10}} \geq x^3+y^3+z'$ 而这是成立的.事实上,
不等式 03.png

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2022-5-30 23:16
原来如此
我那个搞复杂了……

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2023-7-25 19:23
刚才在知乎也看到这题:zhihu.com/question/613736265/answer/3133467824
@O-17 的证法看来也挺好哒😃晚点再仔细研究一下后面的推广面命题

Mobile version|Discuz Math Forum

2025-5-31 11:13 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit