Forgot password?
 Register account
View 245|Reply 4

请问这个公式原理是什么

[Copy link]

41

Threads

60

Posts

563

Credits

Credits
563

Show all posts

baxiannv Posted 2022-5-30 11:52 From mobile phone |Read mode
Last edited by hbghlyj 2025-3-9 05:21The number of digits in base $b$ of a positive integer $k$ is
\[
\left\lfloor\log _b k\right\rfloor+1=\left\lceil\log _b(k+1)\right\rceil .
\]

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2022-5-30 12:30
你是问:为什么 b 进制正整数 k 的位数是 `\lfloor\log_bk\rfloor+1`?
还是问:为什么 `\lfloor\log_bk\rfloor+1=\lceil\log_b(k+1)\rceil`?

41

Threads

60

Posts

563

Credits

Credits
563

Show all posts

 Author| baxiannv Posted 2022-5-30 12:36 From mobile phone
kuing 发表于 2022-5-30 12:30
你是问:为什么 b 进制正整数 k 的位数是 `\lfloor\log_bk\rfloor+1`?
还是问:为什么 `\lfloor\log_bk\rf ...
第二个

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2022-5-30 12:48
设 `a_k=\log_bk`,这是递增数列,且该数列取遍所有自然数,所以相邻两项必在某个区间 `[n,n+1]` 内(含端点),从而等式成立。

83

Threads

435

Posts

5423

Credits

Credits
5423

Show all posts

tommywong Posted 2022-5-30 19:02
The number of digits of k is N $\implies b^{N-1}\le k<b^N$
$\implies N-1\le \log_b k<N\implies \lfloor\log_b k\rfloor =N-1$
$b^{N-1}<k+1\le b^N\implies N-1<\log_b (k+1)\le N
\implies \lceil\log_b (k+1)\rceil =N$
现充已死,エロ当立。
维基用户页:https://zh.wikipedia.org/wiki/User:Tttfffkkk
Notable algebra methods:https://artofproblemsolving.com/community/c728438
《方幂和及其推广和式》 数学学习与研究2016.

Mobile version|Discuz Math Forum

2025-5-31 10:52 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit