Forgot password?
 Register account
View 186|Reply 0

[几何] Pascal定理的一个证明

[Copy link]

3158

Threads

7933

Posts

45

Reputation

Show all posts

hbghlyj posted 2022-6-1 05:04 |Read mode
Last edited by hbghlyj 2023-1-10 13:11
预备定理1 设圆$O$和圆$O'$交于两个点$P$和$Q$.过点$P$作直线$AB$,与圆$O$和$O'$分别交于点$A$和$B$.过点$Q$作直线$A'B'$,与圆$O$和$O'$分别交于点$A'$和$B'$.则$AA'/\!/BB'$. (Reim定理)AA'PBQB'
预备定理2 设$△ABC$和$△A'B'C'$的对应边平行,即$AB/\!/A'B'$、$BC/\!/B'C'$、$CA/\!/C'A'$.如果直线$AA'$、$BB'$、$CC'$两两相交,则这三条直线必相交于一点.
过$A$、$D$、$Z$三点作圆$O'$.圆$O'$与直线$AB$已有交点$A$.设另一个交点为$P$(注意:如果$A=P$,即$AB$与圆$O'$相切的时候,下面的证明仍有效).圆$O'$与直线$DE$除$D$外还交于一点$Q$.由预备定理1可知$PQ/\!/BE$,$QZ/\!/EY,PZ/\!/BY$.再由预备定理2便知$ZY$过$BP$和$EQ$的交点$X$.换句话说,$X,Y,Z$三点在一条直线上.这就证明了帕斯卡定理. image/svg+xml O O' A B C D E F Z P Q Y X

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | 快速注册

$\LaTeX$ formula tutorial

Mobile version

2025-6-8 05:06 GMT+8

Powered by Discuz!

Processed in 0.014336 second(s), 22 queries

× Quick Reply To Top Edit