|
Last edited by hbghlyj 2023-1-10 13:11
预备定理1 设圆$O$和圆$O'$交于两个点$P$和$Q$.过点$P$作直线$AB$,与圆$O$和$O'$分别交于点$A$和$B$.过点$Q$作直线$A'B'$,与圆$O$和$O'$分别交于点$A'$和$B'$.则$AA'/\!/BB'$. (Reim定理) | |
预备定理2 设$△ABC$和$△A'B'C'$的对应边平行,即$AB/\!/A'B'$、$BC/\!/B'C'$、$CA/\!/C'A'$.如果直线$AA'$、$BB'$、$CC'$两两相交,则这三条直线必相交于一点.
| %3Bpair%20S0%3D(793.2pt%2C-611.2pt)%3B%20pair%20A%3D(633.2pt%2C-826.2pt)%3B%20pair%20B%3D(831.2pt%2C-823.2pt)%3B%20pair%20C%3D(763.2pt%2C-768.7pt)%3B%20pair%20A0%3DS0%2B(A-S0)*0.6%3B%20pair%20B0%3DS0%2B(B-S0)*0.6%3B%20pair%20C0%3DS0%2B(C-S0)*0.6%3B%20draw(A--B--S0--A--C--B%5E%5EC--S0%5E%5EA0--B0--C0--A0)%3B%20label(A%2C%22%24A%24%22%2Calign%3DS)%3B%20label(B%2C%22%24B%24%22%2Calign%3DS)%3B%20label(C%2C%22%24C%24%22%2Calign%3Ddir(-115))%3B%20label(A0%2C%22%24A%5E%7B%27%7D%24%22%2Calign%3DW)%3B%20label(B0%2C%22%24B%5E%7B%27%7D%24%22%2Calign%3DE)%3B%20label(C0%2C%22%24C%5E%7B%27%7D%24%22%2Calign%3Ddir(115))%3B%20label(S0%2C%22%24S%24%22%2Calign%3DN)%3B) |
过$A$、$D$、$Z$三点作圆$O'$.圆$O'$与直线$AB$已有交点$A$.设另一个交点为$P$(注意:如果$A=P$,即$AB$与圆$O'$相切的时候,下面的证明仍有效).圆$O'$与直线$DE$除$D$外还交于一点$Q$.由预备定理1可知$PQ/\!/BE$,$QZ/\!/EY,PZ/\!/BY$.再由预备定理2便知$ZY$过$BP$和$EQ$的交点$X$.换句话说,$X,Y,Z$三点在一条直线上.这就证明了帕斯卡定理. | | |
|