Forgot password?
 Register account
View 351|Reply 5

[不等式] a,b,c>0 ,证明 (1+a/b)(1+b/c)(1+c/a)≥2+2(a+b+c)/(abc)^(1/3)

[Copy link]

126

Threads

430

Posts

3152

Credits

Credits
3152

Show all posts

TSC999 Posted 2022-6-9 18:52 |Read mode
① 已知 \(a,b,c>0\) ,证明不等式:\((1+\frac{a}{b})(1+\frac{b}{c})(1+\frac{c}{a})\ge2(1+\frac{a+b+c}{\sqrt[3]{abc}})\)

② 已知 \(a,b,c>0\) ,证明不等式:\((1+\frac{b}{a})(1+\frac{c}{b})(1+\frac{a}{c})\ge2(1+\frac{a+b+c}{\sqrt[3]{abc}})\)



撸题集上有没有这题?


686

Threads

110K

Posts

910K

Credits

Credits
91243
QQ

Show all posts

kuing Posted 2022-6-9 19:23
两个不等式实际上是同一个不等式。

由均值有
\[\frac ab+\frac ab+\frac bc\geqslant3\sqrt[3]{\frac{a^2}{bc}}=\frac{3a}{\sqrt[3]{abc}},\]
同理有另外两式,三式相加后约去 3 即得
\[\sum\frac ab\geqslant\frac{a+b+c}{\sqrt[3]{abc}},\]
同理
\[\sum\frac ba\geqslant\frac{a+b+c}{\sqrt[3]{abc}},\]
所以
\[2+\sum\frac ab+\sum\frac ba\geqslant2+2\cdot\frac{a+b+c}{\sqrt[3]{abc}},\]

\[\prod\left( 1+\frac ab \right)\geqslant2\left( 1+\frac{a+b+c}{\sqrt[3]{abc}} \right).\]

Comment

厉害! 我也想到用均值,但是绝想不到这样用三次。  Posted 2022-6-9 19:51

126

Threads

430

Posts

3152

Credits

Credits
3152

Show all posts

 Author| TSC999 Posted 2022-6-10 09:21
证法二.png

17

Threads

93

Posts

1353

Credits

Credits
1353

Show all posts

yao4015 Posted 2022-6-10 10:17
\[
\frac{a}{b}+\frac{b}{c}+\frac{c}{a}+\frac{b}{a}+\frac{c}{b}+\frac{a}{c}
\geq \frac{2a}{\sqrt[3]{abc}}+\frac{2b}{\sqrt[3]{abc}}+\frac{2c}{\sqrt[3]{abc}}
\]
注意到,$(1,0,-1)\succeq  (\frac{2}{3}, -\frac{1}{3},-\frac{1}{3})$. 所以上面的不等式仅仅是
Muirhead 不等式的特例而已。

3163

Threads

7940

Posts

610K

Credits

Credits
63798
QQ

Show all posts

hbghlyj Posted 2023-3-14 01:32

Mobile version|Discuz Math Forum

2025-6-3 06:43 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit