|
本帖最后由 hbghlyj 于 2023-2-24 16:58 编辑
M4 Geometry 2021 page59
settings.render=2;
import three;
size(5cm,0);
path3 segment =(0.6,0,1.5)-- (0,1.2,0);
surface lampshade =
surface(segment, c=O, axis=Y);
draw(lampshade, yellow);
draw(segment, black, MidArrow3);
draw(O--2X, blue);
draw(O--2Y, green);
draw(O--2Z, red);
Example 100 Show that a meridian on a surface of revolution is a curve of shortest length.
Solution If our generating curve is parameterised by arc length $s$ then we can write it as
$$
\gamma(s)=(f(s), g(s))
$$
in the $x y$-plane, and if $s$ is arc length then $\left|\gamma^{\prime}(s)\right|=1$ so that
$$
f^{\prime}(s)^{2}+g^{\prime}(s)^{2}=1
$$
So we can parameterise the surface of revolution as
$$
\mathbf{r}(s, \theta)=(f(s), g(s) \cos \theta, g(s) \sin \theta)
$$
and a meridian would be of the form $\gamma(s)=\mathbf{r}(s, \alpha)$ where $\alpha$ is a constant.
We then have
$$
\mathbf{r}_{s}=\left(f^{\prime}, g^{\prime} \cos \theta, g^{\prime} \sin \theta\right), \quad \mathbf{r}_{\theta}=(0,-g \sin \theta, g \cos \theta)
$$
and the normal is parallel to
$$
\mathbf{n}=\mathbf{r}_{s} \wedge \mathbf{r}_{\theta}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
f^{\prime} & g^{\prime} \cos \theta & g^{\prime} \sin \theta \\
0 & -g \sin \theta & g \cos \theta
\end{array}\right|=\left(\begin{array}{c}
g g^{\prime} \\
-g f^{\prime} \cos \theta \\
-g f^{\prime} \sin \theta
\end{array}\right)
$$
Finally the acceleration vector $\gamma^{\prime \prime}$ equals
$$
\gamma^{\prime \prime}(s)=\left(f^{\prime \prime}, g^{\prime \prime} \cos \alpha, g^{\prime \prime} \sin \alpha\right)
$$
So at the point $\gamma(s)=\mathbf{r}(s, \alpha)$ we see that
$$
\gamma^{\prime \prime}(s) \wedge \mathbf{n}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
f^{\prime \prime} & g^{\prime \prime} \cos \alpha & g^{\prime \prime} \sin \alpha \\
g g^{\prime} & -g f^{\prime} \cos \alpha & -g f^{\prime} \sin \alpha
\end{array}\right|=\left(\begin{array}{c}
0 \\
g\left(g^{\prime} g^{\prime \prime}+f^{\prime} f^{\prime \prime}\right) \sin \alpha \\
g\left(g^{\prime} g^{\prime \prime}+f^{\prime} f^{\prime \prime}\right) \cos \alpha
\end{array}\right) .
$$
At first glance this does not look to be zero. But recalling $\left(f^{\prime}\right)^{2}+\left(g^{\prime}\right)^{2}=1$ we can differentiate this to get
$$
2 f^{\prime} f^{\prime \prime}+2 g^{\prime} g^{\prime \prime}=0
$$
and so it is indeed the case that $\gamma^{\prime \prime}(s) \wedge \mathbf{n}=\mathbf{0}$ on a meridian.
|
|