找回密码
 快速注册
搜索
查看: 87|回复: 4

meridian on a surface of revolution is a curve of shortest length

[复制链接]

3147

主题

8384

回帖

6万

积分

$\style{scale:11;fill:#eff}꩜$

积分
65372
QQ

显示全部楼层

hbghlyj 发表于 2022-6-9 19:24 |阅读模式
本帖最后由 hbghlyj 于 2023-2-24 16:58 编辑

M4 Geometry 2021 page59
settings.render=2; import three; size(5cm,0); path3 segment =(0.6,0,1.5)-- (0,1.2,0); surface lampshade = surface(segment, c=O, axis=Y); draw(lampshade, yellow); draw(segment, black, MidArrow3); draw(O--2X, blue); draw(O--2Y, green); draw(O--2Z, red);
Example 100 Show that a meridian on a surface of revolution is a curve of shortest length.

Solution If our generating curve is parameterised by arc length $s$ then we can write it as $$ \gamma(s)=(f(s), g(s)) $$ in the $x y$-plane, and if $s$ is arc length then $\left|\gamma^{\prime}(s)\right|=1$ so that $$ f^{\prime}(s)^{2}+g^{\prime}(s)^{2}=1 $$ So we can parameterise the surface of revolution as $$ \mathbf{r}(s, \theta)=(f(s), g(s) \cos \theta, g(s) \sin \theta) $$ and a meridian would be of the form $\gamma(s)=\mathbf{r}(s, \alpha)$ where $\alpha$ is a constant. We then have $$ \mathbf{r}_{s}=\left(f^{\prime}, g^{\prime} \cos \theta, g^{\prime} \sin \theta\right), \quad \mathbf{r}_{\theta}=(0,-g \sin \theta, g \cos \theta) $$ and the normal is parallel to $$ \mathbf{n}=\mathbf{r}_{s} \wedge \mathbf{r}_{\theta}=\left|\begin{array}{ccc} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ f^{\prime} & g^{\prime} \cos \theta & g^{\prime} \sin \theta \\ 0 & -g \sin \theta & g \cos \theta \end{array}\right|=\left(\begin{array}{c} g g^{\prime} \\ -g f^{\prime} \cos \theta \\ -g f^{\prime} \sin \theta \end{array}\right) $$ Finally the acceleration vector $\gamma^{\prime \prime}$ equals $$ \gamma^{\prime \prime}(s)=\left(f^{\prime \prime}, g^{\prime \prime} \cos \alpha, g^{\prime \prime} \sin \alpha\right) $$ So at the point $\gamma(s)=\mathbf{r}(s, \alpha)$ we see that $$ \gamma^{\prime \prime}(s) \wedge \mathbf{n}=\left|\begin{array}{ccc} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ f^{\prime \prime} & g^{\prime \prime} \cos \alpha & g^{\prime \prime} \sin \alpha \\ g g^{\prime} & -g f^{\prime} \cos \alpha & -g f^{\prime} \sin \alpha \end{array}\right|=\left(\begin{array}{c} 0 \\ g\left(g^{\prime} g^{\prime \prime}+f^{\prime} f^{\prime \prime}\right) \sin \alpha \\ g\left(g^{\prime} g^{\prime \prime}+f^{\prime} f^{\prime \prime}\right) \cos \alpha \end{array}\right) . $$ At first glance this does not look to be zero. But recalling $\left(f^{\prime}\right)^{2}+\left(g^{\prime}\right)^{2}=1$ we can differentiate this to get $$ 2 f^{\prime} f^{\prime \prime}+2 g^{\prime} g^{\prime \prime}=0 $$ and so it is indeed the case that $\gamma^{\prime \prime}(s) \wedge \mathbf{n}=\mathbf{0}$ on a meridian.

48

主题

992

回帖

1万

积分

积分
14981
QQ

显示全部楼层

Czhang271828 发表于 2022-6-16 21:16
本帖最后由 Czhang271828 于 2022-6-16 21:22 编辑 I wonder what "a curve of shortest length" precisely means in your proposition. Is it either a geodesic curve (locally shortest) or a ray (globally shortest)?

Admittedly, meridians are always geodesic curves. The whole derivation above seems perfect for proving that. Whereas one cannot deduce that meridians are globally shortest via the derivation above.

p.s. Let $\Gamma$ be the surface $\{(\cos u,\sin u, v):u\in S^1,v\in \mathbb R\}$. The regular curve $\gamma(t)=(\cos t,\sin t,t)$ is a geodesic curve but not a ray. This is due to the distance between $\gamma(2\pi)$ and $\gamma(0)$ is $2\pi$ on $\Gamma$, but $2\sqrt 2\pi$ on $\gamma$. One can deduce this by flatting the cylinder since length, area, Gauß curvature, geodesic curves are intrinsic.
无钱佮歹看、无样佮歹生、无汉草佮无文采、无学历佮无能力、无高度无速度无力度共闲无代志。(闽南话)
口号:疼惜生命,远离内卷。

3147

主题

8384

回帖

6万

积分

$\style{scale:11;fill:#eff}꩜$

积分
65372
QQ

显示全部楼层

 楼主| hbghlyj 发表于 2022-6-17 08:38
Czhang271828 发表于 2022-6-16 14:16
I wonder what "a curve of shortest length" precisely means in your proposition. Is it either a geode ...


Sorry, I didn't get your point:
A meridian of a surface of revolution is the intersection of the surface with a plane containing the axis of revolution.--Mathworld

But the curve $\gamma(t)=(\cos t,\sin t,t)$ in your example doesn't seem to be planar

48

主题

992

回帖

1万

积分

积分
14981
QQ

显示全部楼层

Czhang271828 发表于 2022-6-17 10:44
hbghlyj 发表于 2022-6-17 08:38
Sorry, I didn't get your point:

But the curve $\gamma(t)=(\cos t,\sin t,t)$ in your example doesn ...


The word 短程线 is, to some degree, confusing and ambiguous. In fact, it involves two distinct definitions, geodesic curve and ray.

Geodesic curve (locally behaviour): $\gamma\subset \Gamma$ is a geodesic curve (with arc parameterisation) whenever $\forall s\geq 0$ there exists $\delta>0$ such that $ \forall s'\in (s-\delta,s+\delta)\cap[0,\infty)$, the path connecting $\gamma(s)$ and $\gamma(s')$ with minimal length is contained in $\{\gamma(t)\mid |t-s|\leq |s'-s|\}$.

Ray (globally behaviour): $\alpha\subset \Gamma$ is a ray (with arc parameterisation) whenever for each $s_2>s_1\geq 0$, the path connecting $\gamma(s_1)$ and $\gamma(s_2)$ with minimal length is contained in $\{\gamma(t)\mid s_1\leq t\leq s_2\}$.

Obviously, rays are always geodesic curves.

The proposition above only proves that meridians are geodesic curves. The example in 2# shows that rays $\subsetneq$ geodesic curves.
无钱佮歹看、无样佮歹生、无汉草佮无文采、无学历佮无能力、无高度无速度无力度共闲无代志。(闽南话)
口号:疼惜生命,远离内卷。

3147

主题

8384

回帖

6万

积分

$\style{scale:11;fill:#eff}꩜$

积分
65372
QQ

显示全部楼层

 楼主| hbghlyj 发表于 2022-6-17 13:08
Czhang271828 发表于 2022-6-17 03:44
The word 短程线 is, to some degree, confusing and ambiguous. In fact, it involves two distinct def ...


Yes. I agree.
But I notice that the curve $\gamma(t)=(\cos t,\sin t,t)$ in your example isn't planar. According to the definition it should be in a plane containing the axis of revolution

手机版|悠闲数学娱乐论坛(第3版)

GMT+8, 2025-3-4 19:14

Powered by Discuz!

× 快速回复 返回顶部 返回列表