Forgot password?
 Register account
View 333|Reply 2

[数论] 数论小题

[Copy link]

76

Threads

34

Posts

914

Credits

Credits
914

Show all posts

大佬最帅 Posted 2022-6-9 20:13 |Read mode
微信图片_20220609201327.jpg

83

Threads

435

Posts

5423

Credits

Credits
5423

Show all posts

tommywong Posted 2022-6-11 12:38
仲未做到,宜家知道至少整除$4k^2$

$(2k-1)^{2k+1}+(2k-1)^2(2k+1)^{2k+1}-(2k-1)^{2k+1}-(2k+1)^{2k-1}$
$=[(2k-1)^2 (2k+1)^2-1](2k+1)^{2k-1}$
$=8k^2(2k^2-1)(2k+1)^{2k-1}$

$\gcd(\left(2k-1)^{2k-1}+(2k+1)^{2k+1},~(2k-1)^{2k+1}+(2k+1)^{2k-1}\right)$
$=\gcd(\left(2k-1)^{2k-1}+(2k+1)^{2k+1},~8k^2(2k^2-1)(2k+1)^{2k-1}\right)$

$\gcd(\left(2k-1)^{2k-1}+(2k+1)^{2k+1},~2k+1\right)$
$=\gcd(\left(2k-1)^{2k-1},~2k+1\right)$
$=\gcd(2^{2k-1},~2k+1)=1$

$(2k-1)^{2k-1}+(2k+1)^{2k+1}$
$\displaystyle =\sum_{n=0}^{2k+1}\binom{2k+1}{n}(2k)^n
-\sum_{n=0}^{2k-1}\binom{2k-1}{n}(-2k)^n$
$\displaystyle =8k^2+\sum_{n=2}^{2k+1}\binom{2k+1}{n}(2k)^n
-\sum_{n=2}^{2k-1}\binom{2k-1}{n}(-2k)^n$
$\displaystyle =4k^2+16k^3+\sum_{n=3}^{2k+1}\binom{2k+1}{n}(2k)^n
-\sum_{n=3}^{2k-1}\binom{2k-1}{n}(-2k)^n$

$\gcd(\left(2k-1)^{2k-1}+(2k+1)^{2k+1},~8k^2\right)
=4k^2$

仲淨$\gcd(\left(2k-1)^{2k-1}+(2k+1)^{2k+1},~2k^2-1\right)$
如果佢哋互質就證明到係$4k^2$
现充已死,エロ当立。
维基用户页:https://zh.wikipedia.org/wiki/User:Tttfffkkk
Notable algebra methods:https://artofproblemsolving.com/community/c728438
《方幂和及其推广和式》 数学学习与研究2016.

83

Threads

435

Posts

5423

Credits

Credits
5423

Show all posts

tommywong Posted 2022-6-12 21:03
有反例$k=14$
$17\mid 27^{27}+29^{29},~27^{29}+29^{27}$
artofproblemsolving.com/community/c6h2805668p24734479
现充已死,エロ当立。
维基用户页:https://zh.wikipedia.org/wiki/User:Tttfffkkk
Notable algebra methods:https://artofproblemsolving.com/community/c728438
《方幂和及其推广和式》 数学学习与研究2016.

Mobile version|Discuz Math Forum

2025-5-31 10:38 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit