Forgot password
 Register account
View 202|Reply 0

自同构群为交换群的有限群是循环群

[Copy link]

3156

Threads

7932

Posts

45

Reputation

Show all posts

hbghlyj posted 2022-6-15 16:44 |Read mode
math.stackexchange.com/questions/1302721/is-t … mautg-is-abelian-but
If $G$ is finite abelian and not cyclic, it can be written as direct sum $G=G_1\oplus G_2\oplus\ldots \oplus G_n$ of $n\ge2$ nontrivial cyclic groups of orders dividing each other. Say $G_1\cong \mathbb Z/m\mathbb Z$ and $G_2\cong \mathbb Z/md\mathbb Z$. As $G_1\oplus G_2$ is a direct summand, $\operatorname{Aut}(G_1\oplus G_2)$ is a subgroup of $\operatorname{Aut}(G)$.
The group $\mathbb Z/m\mathbb Z\oplus\mathbb Z/md\mathbb Z$ has especially the automorphisms $$\phi\colon (x+m\mathbb Z,y+md\mathbb Z)\mapsto (x+y+m\mathbb Z,y+md\mathbb Z)$$ and $$\psi\colon(x+m\mathbb Z,y+md\mathbb Z)\mapsto(x+\mathbb Z,y+dx+md\mathbb Z).$$
We have
$\psi(\phi(m\mathbb Z,1+md\mathbb Z))=(1+m\mathbb Z,1+d+md\mathbb Z)$ and $\phi(\psi(m\mathbb Z,1+md\mathbb Z))=(1+m\mathbb Z,1+md\mathbb Z)$. As $m>1$, this shows that $\operatorname{Aut}(G_1\oplus G_2)$ is not abelian.
$$(mℤ,1+mdℤ)\oversetϕ→(1+mℤ,1+mdℤ)\oversetψ→(1+mℤ,1+d+mdℤ)$$$$(mℤ,1+mdℤ)\oversetψ→(mℤ,1+mdℤ)\oversetϕ→(1+mℤ,1+mdℤ)$$当$m>1$时不同构.


去掉“有限群”的限制,结论不成立,见this answer
In general however, a group with abelian automorphism group need not be abelian, i.e., in particular not cyclic. See the article
Jonah, D.; Konvisser, M.
Some non-abelian $p$-groups with abelian automorphism groups.
Arch. Math. (Basel) 26 (1975), 131--133.

In the infinite case, there are locally cyclic groups that are not cyclic, and these have abelian automorphism groups. For instance, the additive group of rational numbers has an abelian automorphism group (the multiplicative group of rational numbers).

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-6-8 20:49 GMT+8

Powered by Discuz!

Processed in 0.017637 second(s), 21 queries

× Quick Reply To Top Edit