Forgot password?
 Register account
View 160|Reply 2

$a,b$是正整数,$(-a)×(-b)=ab$

[Copy link]

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2022-6-15 17:19 |Read mode
定义了整数的加法,和正整数的乘法以后,我们发现$⟨\mathbb{Z},+⟩$的自同构群由$f_a$和$f_{-a}$这两种映射组成:
对于任意正整数$a,n$,\begin{array}lf_{a}(n)=na&\text{(将正整数映射到正整数)}\\f_{a}(-n)=-na&\text{(将负整数映射到负整数)}\\f_{-a}(n)=-na&\text{(将正整数映射到负整数)}\\f_{-a}(-n)=na&\text{(将负整数映射到正整数)}\end{array}对于任意正整数$a,b,n$,考虑映射的复合:$$(f_{-a}∘f_{-b})(n)=f_{-a}(-nb)=nab$$$$(f_{-a}∘f_{-b})(-n)=f_{-a}(nb)=-nab$$所以$$f_{-a}∘f_{-b}=f_{ab}$$为了使$⟨\mathbb{Z}^*,×⟩≅\operatorname{Aut}(⟨\mathbb{Z},+⟩)$成立,我们可以定义$(-a)×(-b)=ab$.

13

Threads

907

Posts

110K

Credits

Credits
12299

Show all posts

色k Posted 2022-6-15 17:43 From mobile phone
标题党?

Comment

已改.  Posted 2022-6-15 19:16

Mobile version|Discuz Math Forum

2025-5-31 10:36 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit