Forgot password?
 Register account
View 412|Reply 1

四边形 九宫格 中间的面积为1/9

[Copy link]

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2022-6-18 01:39 |Read mode
Trisect sides of a quadrilateral and connect the points to have nine quadrilaterals, as can be seen in the figure. Prove that the middle quadrilateral area is one ninth of the whole area.
X0lnd[1].jpg
math.stackexchange.com/questions/465986/trise … dle-has-1-9-the-area

Claim. $W$ and $Z$ trisect $\overline{PH}$. Likewise elsewhere.

Proof. Left to the reader (for now).
Given the claim, we can make this illustrated argument:

6CyRt[1].png

Here, we have $\triangle ABC \sim \triangle PBF$, with
$$\frac{|\overline{PB}|}{|\overline{AB}|} = \frac{|\overline{FB}|}{|\overline{CB}|} = \frac{2}{3} = \frac{|\overline{PF}|}{|\overline{AC}|}
\qquad \text{and} \qquad
\overline{PF} \parallel \overline{AC}$$
and $\triangle PZF \sim \triangle WZY$, with
$$\frac{|\overline{WZ}|}{|\overline{PZ}|} = \frac{|\overline{YZ}|}{|\overline{FZ}|} = \frac{1}{2} = \frac{|\overline{WY}|}{|\overline{PF}|}
\qquad \text{and} \qquad
\overline{WY} \parallel \overline{PF}$$
so that
$$|\overline{WY}|= \frac13 |\overline{AC}| \qquad \text{and} \qquad \overline{WY} \parallel \overline{AC}$$
and likewise
$$|\overline{XY}|= \frac13 |\overline{BD}| \qquad \text{and} \qquad \overline{XZ} \parallel \overline{BD}$$

By the Diagonal-Diagonal-Angle formula for quadrilateral area,
$$|\square WXYZ| = \frac{1}{2}|\overline{WY}||\overline{XZ}|\sin\theta = \frac12 \cdot \frac{1}{3}|\overline{AC}| \cdot \frac13 |\overline{BD}|\cdot \sin\theta = \frac19 |\square ABCD|$$

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2022-6-18 01:49

Mobile version|Discuz Math Forum

2025-5-31 10:52 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit