|
Wikipedia
For example, let $ f(x) = \begin{cases} \sin x, & x\neq0 \\ x, & x=0 \end{cases} $ , $ g(x)=x $, and $ c = 0 $. In this case, $ f(x) $ is not differentiable at $ c $. However, since $ f(x) $ is differentiable everywhere except $ c $, then $ \lim_{x \to c}f'(x) $ still exists.Thus, since $$\lim_{x\to c} \frac{f(x)}{g(x)} = \frac{0}{0}$$ and$$\lim_{x\to c} \frac{f'(x)}{g'(x)} $$exists, L'Hôpital's rule still holds.
$ f(x) = \begin{cases} \sin x, & x\neq0 \\ x, & x=0 \end{cases} $ 不就是$f(x)=\sin x$吗?为什么not differentiable at $c=0$呢 |
|