Forgot password
 Register account
View 294|Reply 7

[函数] $f(x)$在0不可导?疑问

[Copy link]

3200

Threads

7827

Posts

52

Reputation

Show all posts

hbghlyj posted 2022-6-19 19:39 |Read mode
Wikipedia
For example, let $ f(x) = \begin{cases} \sin x, & x\neq0 \\ x, & x=0 \end{cases} $ , $ g(x)=x $, and $ c = 0 $. In this case, $ f(x) $ is not differentiable at $ c $. However, since $ f(x) $ is differentiable everywhere except $ c $, then $ \lim_{x \to c}f'(x) $ still exists.Thus, since $$\lim_{x\to c} \frac{f(x)}{g(x)} = \frac{0}{0}$$ and$$\lim_{x\to c} \frac{f'(x)}{g'(x)} $$exists, L'Hôpital's rule still holds.
$ f(x) = \begin{cases} \sin x, & x\neq0 \\ x, & x=0 \end{cases} $ 不就是$f(x)=\sin x$吗?为什么not differentiable at $c=0$呢

3200

Threads

7827

Posts

52

Reputation

Show all posts

original poster hbghlyj posted 2022-6-19 19:44
en.wikipedia.org/wiki/L'Hôpital's_rule
Discuz的BBcode的url标签的网址中不能包含单引号???
我打开以后只剩L了???
500px-Mollifier_Illustration.svg[1].png

13

Threads

898

Posts

8

Reputation

Show all posts

色k posted 2022-6-19 19:48 from mobile
估计只是打错了而已,他可能想说 sin(1/x)

3200

Threads

7827

Posts

52

Reputation

Show all posts

original poster hbghlyj posted 2022-6-19 20:04
色k 发表于 2022-6-19 12:48
估计只是打错了而已,他可能想说 sin(1/x)
晕了 应该怎样改才对呢

13

Threads

898

Posts

8

Reputation

Show all posts

色k posted 2022-6-19 20:48
翻译了一下才知道原文想表达什么……3# 的估计不对……

应该只需改成 `f(x) = \begin{cases} \sin x, & x\neq0 \\ 1, & x=0 \end{cases}` 就行
这名字我喜欢

3200

Threads

7827

Posts

52

Reputation

Show all posts

original poster hbghlyj posted 2022-6-19 21:39
色k 发表于 2022-6-19 13:48
翻译了一下才知道原文想表达什么……3# 的估计不对……

应该只需改成 `f(x) = \begin{cases} \sin x, & x\ ...
Ok. 刚才按照楼上说的作了修改
500px-Mollifier_Illustration.svg[1].png

现在的话$$f'_+(0)=\lim_{x→0^+}\frac{f(x)-f(0)}{x-0}=\lim_{x→0^+}\frac{\sin x-1}x=-∞$$$$f'_-(0)=\lim_{x→0^-}\frac{f(x)-f(0)}{x-0}=\lim_{x→0^-}\frac{\sin x-1}x=+∞$$所以$f'(0)$不存在. 而$$\lim_{x→0}f'(x)=\lim_{x→0}\cos x=1$$搞定  ∂‑(^.^)z

764

Threads

4672

Posts

27

Reputation

Show all posts

isee posted 2022-6-20 09:28 from mobile
这竟然是个入门知识点

Comment

$(\ddot{\smile})$  posted 2022-6-21 04:50

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 14:46 GMT+8

Powered by Discuz!

Processed in 0.016168 seconds, 26 queries