|
战巡
Posted 2022-6-24 11:01
应该缺条件
\[\sum_{i=1}^{16}(a_i+b_i)=\sum_{i=1}^{16}S_{16}\]
\[S_{16}+T_{16}=16S_{16}\]
\[15S_{16}=T_{16}=2040\]
\[S_{16}=136\]
这里从$a_i+b_i=a_{i+1}+b_{i+1}=S_{16}$,可知
\[a_{i+1}-a_i=b_i-b_{i+1}\]
因此如果$a_n$公差为$d$,那$b_n$公差即为$-d$
而后令$a_n=a_1+(n-1)d$,$b_n=b_1-(n-1)d$
可以得到
\[\sum_{i=1}^{16}a_i=16a_1+120d=136\]
\[\sum_{i=1}^{16}b_i=16b_1-120d=2040\]
解得
\[a_1=136-b_1,d=\frac{2b_1-255}{15}\]
\[a_9=a_1+8d=\frac{b_1}{15}\]
这个$b_1$解不出来的,你要说那里求和是从1到17,这事还有戏,现在这样没戏的 |
|