|
战巡
Posted 2022-6-29 16:02
注意到
\[\cos(\frac{\pi}{7}),\cos(\frac{3\pi}{7}),\cos(\frac{5\pi}{7})\]
为方程
\[x^3-\frac{1}{2}x^2-\frac{1}{2}x+\frac{1}{8}=0\]
的三个解
很容易得到
\[\sec(\frac{\pi}{7}),\sec(\frac{3\pi}{7}),\sec(\frac{5\pi}{7})\]
为方程
\[x^3-4x^2-4x+8=0\]
的三个解,简单起见直接令$\sec(\frac{\pi}{7}),\sec(\frac{3\pi}{7}),\sec(\frac{5\pi}{7})$为$x_1,x_2,x_3$,就有
\[x_1+x_2+x_3=4\]
\[x_1x_2x_3=-8\]
注意这里会有
\[x_1=-\sec(\frac{6\pi}{7})=\frac{\sec^2(\frac{3\pi}{7})}{\sec^2(\frac{3\pi}{7})-2}=\frac{x_2^2}{x_2^2-2}\]
\[x_2^2=\frac{2x_1}{x_1-1}\]
那么考察
\[(x_2+x_3-1)^2\]
\[=x_2^2+2x_2x_3-2(x_2+x_3)+x_3^2+1\]
\[=\frac{2x_1}{x_1-1}-\frac{16}{x_1}-2(4-x_1)+x_3^2+1\]
\[=\frac{2(x_1^3-4x_1^2-4x_1+8)}{x_1(x_1-1)}+x_3^2+1\]
\[=x_3^2+1\]
于是乎就有
\[\sqrt{2+\tan^2(\frac{2\pi}{7})}=\sqrt{1+\sec^2(\frac{5\pi}{7})}=\sqrt{1+x_3^2}\]
\[=\sqrt{(x_2+x_3-1)^2}=x_2+x_3-1\]
然后原式
\[=x_1+x_2+x_3-1=3\]
第二个套路相似,可以证明
\[2+\tan^2(\frac{\pi}{7})=1+\sec^2(\frac{\pi}{7})=1+x_1^2=(x_1+x_3-1)^2\]
不过要注意$x_1+x_3-1<0$,因此开根号后要反过来,会有原式
\[=-\sec(\frac{3\pi}{7})+\sqrt{1+\sec^2(\frac{\pi}{7})}=-x_2+1-x_1-x_3=-3\] |
|