Forgot password?
 Register account
View 289|Reply 4

[不等式] 求这个式子的取值范围

[Copy link]

3

Threads

4

Posts

40

Credits

Credits
40

Show all posts

babyqq Posted 2022-7-1 17:10 From mobile phone |Read mode
如图 有啥简便做法吗
26d6a16256ae805f.jpg

25

Threads

1011

Posts

110K

Credits

Credits
12665

Show all posts

战巡 Posted 2022-7-1 17:40
\[[2x+\sqrt{2-2x^2}]a\ge x-3x^3\]
\[a\ge\frac{x-3x^3}{2x+\sqrt{2-2x^2}}\]
\[\frac{d}{dx}\frac{x-3x^3}{2x+\sqrt{2-2x^2}}=\frac{1-2x^2}{\sqrt{2-2x^2}}-2x=0\]
注意范围$0<x<\frac{1}{\sqrt{3}}$,解得
\[x=\sqrt{\frac{1}{6}(3-\sqrt{6})}\]
不难证明这玩意是极大值,会有
\[\frac{x-3x^3}{2x+\sqrt{2-2x^2}}\]
在$x=\sqrt{\frac{1}{6}(3-\sqrt{6})}$取得极大值,为
\[\frac{x-3x^3}{2x+\sqrt{2-2x^2}}\le \frac{1}{4}(\sqrt{6}-2)\]
这就是$a$的最小值了,即
\[a\ge\frac{1}{4}(\sqrt{6}-2)\]

3

Threads

4

Posts

40

Credits

Credits
40

Show all posts

 Author| babyqq Posted 2022-7-1 17:58
那个x=。。。怎么解

3

Threads

4

Posts

40

Credits

Credits
40

Show all posts

 Author| babyqq Posted 2022-7-1 17:58
战巡 发表于 2022-7-1 17:40
\[[2x+\sqrt{2-2x^2}]a\ge x-3x^3\]
\[a\ge\frac{x-3x^3}{2x+\sqrt{2-2x^2}}\]
\[\frac{d}{dx}\frac{x-3x^3 ...
那个x怎么解啊

25

Threads

1011

Posts

110K

Credits

Credits
12665

Show all posts

战巡 Posted 2022-7-1 18:02
.......这还要问啊??

\[\frac{1-2x^2}{\sqrt{2-2x^2}}-2x=0\]
\[1-2x^2=2x\sqrt{2-2x^2}\]
\[(1-2x^2)^2=4x^2(2-2x^2)\]
后面变成与$x^2$相关的二次方程了

Mobile version|Discuz Math Forum

2025-5-31 11:04 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit