Forgot password?
 Register account
View 342|Reply 4

[几何] 求圆心距的最小值

[Copy link]

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2022-7-4 23:55 |Read mode
Last edited by isee 2022-7-5 17:08如图所示,两外切圆$\odot O_1,\odot O_2$均与$\mathrm {Rt}\triangle ABC$的斜边$AB$相切且两直角边分别与两圆相切,若$a=4$,$b=3$,求两圆心距$O_1O_2$的最小值.
c-c-t.jpg
isee=freeMaths@知乎

67

Threads

407

Posts

3537

Credits

Credits
3537

Show all posts

Tesla35 Posted 2022-7-5 00:36
235530keuau5qenyi2nvee.jpg

$2x+2\sqrt{xy}+3y=5$,求$x+y$的最小值.

因为
$\frac{\sqrt{5}+1}{2}x+\frac{\sqrt{5}-1}{2}y\geqslant2\sqrt{xy}$.

所以
$5=2x+2\sqrt{xy}+3y\leqslant2x+3y+\frac{\sqrt{5}+1}{2}x+\frac{\sqrt{5}-1}{2}y=\frac{\sqrt{5}+5}{2}(x+y)$

解得$x+y\geqslant\frac{5-\sqrt{5}}{2}$

Rate

Number of participants 1威望 +1 Collapse Reason
isee + 1

View Rating Log

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2022-7-5 00:43
Tesla35 发表于 2022-7-5 00:36
$2x+2\sqrt{xy}+3y=5$,求$x+y$的最小值.

因为
秒了秒了,此时$y=1$正好是三角形$ABC$的内切圆
isee=freeMaths@知乎

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2022-7-5 14:32
isee 发表于 2022-7-5 00:43
秒了秒了,此时$y=1$正好是三角形$ABC$的内切圆
“正好是内切圆”那是真的巧合,换别的边长比就不是了。

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2022-7-13 08:37
kuing 发表于 2022-7-5 14:32
“正好是内切圆”那是真的巧合,换别的边长比就不是了。
巧得没谱了~
isee=freeMaths@知乎

Mobile version|Discuz Math Forum

2025-5-31 11:22 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit