Forgot password?
 Register account
View 185|Reply 2

满足特殊条件的复数问题

[Copy link]

9

Threads

7

Posts

225

Credits

Credits
225

Show all posts

anhcanhsat97 Posted 2022-7-7 22:12 |Read mode
给定复数 $z_{1}, z_{2}, z_{3}$ 满足 $2\left|z_{1}\right|=2\left|z_{2}\right|=\left|z_{ 3}\right|=2$ 和 $\left(z_{1}+z_{2}\right) z_{3}=3 z_{1} z_{2}$. 令$A,B,C$分别为$z_{1},z_{2},z_{3}$在坐标平面上的表示点. 求三角形 $A B C$ 的面积

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2022-7-8 00:37
–2–112–2–1120$\overline{z_1}$$\overline{z_2}$$\overline{z_3}$
$$\begin{rcases}\overline{z_1}=\frac1{z_1}\\\overline{z_2}=\frac1{z_2}\\\overline{z_3}=\frac4{z_3}\\\left(z_{1}+z_{2}\right) z_{3}=3 z_{1} z_{2}\end{rcases}⇒\frac{\overline{z_1}+\overline{z_2}}2=\frac38\overline{z_3}$$ $\begin{rcases}|\overline{z_1}|=|\overline{z_2}|\\\left|\frac{\overline{z_1}+\overline{z_2}}2\right|=\frac34\end{rcases}⇒$ 经过$\overline{z_1},\overline{z_2}$的直线到$0$的距离为$\frac34⇒$ $|\overline{z_1}-\overline{z_2}|=2\sqrt{1-\left(3\over4\right)^2}=\frac{\sqrt7}2$
而$\overline{z_3}$在经过$0,\frac{\overline{z_1}+\overline{z_2}}2$的直线上.
所以$\operatorname{Area}(z_1,z_2,z_3)=\operatorname{Area}(\overline{z_1},\overline{z_2},\overline{z_3})=\frac12·\frac{\sqrt7}2·\left(2-\frac34\right)=\frac{5\sqrt7}{16}$

Comment

乃思  Posted 2022-7-8 03:16

Rate

Number of participants 1威望 +1 Collapse Reason
anhcanhsat97 + 1

View Rating Log

Mobile version|Discuz Math Forum

2025-5-31 10:33 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit