|
$$\begin{rcases}\overline{z_1}=\frac1{z_1}\\\overline{z_2}=\frac1{z_2}\\\overline{z_3}=\frac4{z_3}\\\left(z_{1}+z_{2}\right) z_{3}=3 z_{1} z_{2}\end{rcases}⇒\frac{\overline{z_1}+\overline{z_2}}2=\frac38\overline{z_3}$$
$\begin{rcases}|\overline{z_1}|=|\overline{z_2}|\\\left|\frac{\overline{z_1}+\overline{z_2}}2\right|=\frac34\end{rcases}⇒$ 经过$\overline{z_1},\overline{z_2}$的直线到$0$的距离为$\frac34⇒$ $|\overline{z_1}-\overline{z_2}|=2\sqrt{1-\left(3\over4\right)^2}=\frac{\sqrt7}2$ 而$\overline{z_3}$在经过$0,\frac{\overline{z_1}+\overline{z_2}}2$的直线上.
所以$\operatorname{Area}(z_1,z_2,z_3)=\operatorname{Area}(\overline{z_1},\overline{z_2},\overline{z_3})=\frac12·\frac{\sqrt7}2·\left(2-\frac34\right)=\frac{5\sqrt7}{16}$ |
Rate
-
View Rating Log
|