|
如图,圆O是△ABC的外接圆,D是BC的中点,∠BAC的角平分线与圆O交于E。求证:AB+AC<AD+AE。
建系$D(0,0),B(-c,0),C(c,0),A(x_0,y_0)$.
考虑$A$在以$BC$为焦点的椭圆上运动,由光学性质知,$AE$垂直于$A$处切线$\frac{x_0x}{a^2}+\frac{y_0y}{b^2}=1$。
$AE:\frac{y_0}{b^2}(x-x_0)-\frac{x_0}{a^2}(y-y_0)=0$
$⇒(y_E-y_0)^2=\left(\frac{a^2}{b^2}y_0\right)^2$
$⇒AE^2=x_0^2+(y_E-y_0)^2=x_0^2+\frac{a^4}{b^4}y_0^2$
\begin{align*}
AE+AD&=\sqrt{x_0^2+\frac{a^4}{b^4}y_0^2}+\sqrt{x_0^2+y_0^2}\\
&=\sqrt{x_0^2+\frac{a^4}{b^4}(b^2-\frac{b^2}{a^2}x_0^2)}+\sqrt{x_0^2+b^2-\frac{b^2}{a^2}x_0^2}\\
&=\sqrt{\frac{a^4}{b^2}-\frac{c^2}{b^2}x_0^2}+\sqrt{b^2+\frac{c^2}{a^2}x_0^2}\\
&\overset{\small\clap{Lagrange}}{=}\>\>\sqrt{(a^4-c^2x_0^2+a^2b^2+c^2x_0^2)\left(\frac1{b^2}+\frac1{a^2}\right)-\left(\frac{a^2b^2+c^2x_0^2}{b}-\frac{a^4-c^2x_0^2}{a}\right)}\\
&\overset{\small\clap{单调性}}{>}\>\>2a
\end{align*} |
|