Forgot password?
 Register account
View 334|Reply 10

[几何] 新人报道,发个小题

[Copy link]

6

Threads

55

Posts

814

Credits

Credits
814

Show all posts

Ly-lie Posted 2022-7-26 08:04 |Read mode
对于$ \triangle ABC $,其外接圆上劣弧$ BC $,劣弧$ CA $和劣弧$ AB $的中点分别为$ D,E,F $.边$ BC,CA,AB $的中点为$ X,Y,Z $.如果\( EZ\cap FY=P \),\( DZ \cap FX = Q  \),\( EX \cap DY = R \).求证$ AP,BQ,CR $和$ \triangle ABC $的欧拉线四线共点.


题.PNG

6

Threads

55

Posts

814

Credits

Credits
814

Show all posts

 Author| Ly-lie Posted 2022-7-26 14:51
共点似乎可以角元塞瓦加正弦定理解决
首先有:$$ \frac{AE}{\sin \angle AZE} =\frac{EZ}{\sin \angle BAE}$$以及$$ \frac{EY}{\sin \angle EZY}=\frac{EZ}{\sin \angle ZYE} $$于是\[ \frac{AE}{EY}\cdot \frac{\sin \angle EZY}{\sin \angle AZE}=\frac{\sin \angle ZYE}{\sin \angle BAE} \]\[ \frac{\sin \angle EZY}{\sin \angle AZE}=\sin \frac{B}{2}\cdot \frac{\sin (C+\frac{\pi}{2})}{\sin (A+\frac{B}{2})} \]同理:\[ \frac{\sin \angle FYZ}{\sin \angle AYF}=\sin \frac{C}{2}\cdot \frac{\sin (B+\frac{\pi}{2})}{\sin (A+\frac{C}{2})} \]对$ P $和$ \triangle AZY $,由角元塞瓦定理:\[ \frac{\sin \angle ZAP}{\sin \angle YAP}=\frac{\sin (A+\frac{B}{2})}{\sin (A+\frac{C}{2})}\cdot \frac{\sin \frac{C}{2}}{\sin \frac{B}{2}}\cdot \frac{\cos B}{\cos C} \]于是\[ \prod_{cyc}\frac{\sin \angle ZAP}{\sin \angle YAP}=1 \]由角元塞瓦定理知命题成立.

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2022-7-27 07:07
X(28) = CEVAPOINT OF X(19) AND X(25) ETC#X28
下面的截图和定义来自glossary的cevapoint条目的几何画板文件
CEVAPOINT

The cevapoint of P and U is the point X of concurrence of the lines AA', BB', CC'.

A"B"C" is the anticevian triangle of U, and A'B'C' is the triangle formed by the intersections of lines A"P, B"P, C"P with lines BC, CA, AB, respectively.
Cevian Nest Theorem见cut-the-knotAEG2013Chapter14
2#的共点就是这里的P=X(19),U=X(25)的情况.

6

Threads

55

Posts

814

Credits

Credits
814

Show all posts

 Author| Ly-lie Posted 2022-7-27 09:24
hbghlyj 发表于 2022-7-27 07:07
本帖最后由 hbghlyj 于 2022-7-27 01:30 编辑 X(28) = CEVAPOINT OF X(19) AND X(25) ETC#X28

下面的截图 ...
对于X(28)在欧拉线上,是否有纯几何证法?

6

Threads

55

Posts

814

Credits

Credits
814

Show all posts

 Author| Ly-lie Posted 2022-7-27 14:15
hbghlyj 发表于 2022-7-27 07:07
本帖最后由 hbghlyj 于 2022-7-27 01:30 编辑 X(28) = CEVAPOINT OF X(19) AND X(25) ETC#X28

下面的截图 ...
我对这个塞瓦巢定理的使用还是有点不理解,可否具体在题中证明一下该定理的使用构型?X(19)似乎与本题的构型关系不大

6

Threads

55

Posts

814

Credits

Credits
814

Show all posts

 Author| Ly-lie Posted 2022-7-27 21:50
hbghlyj 发表于 2022-7-27 21:42
我觉得也是关系不大...我只是搬运资料...这道题本身我也没有头绪
您能猜出共于X(28)就很强了,说不定能帮助解决这个问题,非常感谢

6

Threads

55

Posts

814

Credits

Credits
814

Show all posts

 Author| Ly-lie Posted 2022-7-28 09:37
hbghlyj 发表于 2022-7-27 21:42
我觉得也是关系不大...我只是搬运资料...这道题本身我也没有头绪
我现学了一下三线坐标,X(28)应该是$ \alpha =\frac{\tan A}{b+c} $,但为什么怎么算都不对,可以帮忙看一下吗(可能是定义没弄明白)
\[ F=(a+b,a+b,-c),Y=(\frac{1}{2},0,\frac{1}{2}) \]因此\[ FY:(a+b)x-(a+b+c)y-(a+b)z=0 \]
同理\[ ZE:(a+c)x-(a+c)y-(a+b+c)z=0 \]算出交点\[ P=(b^2+c^2+ab+bc+ca,b^2+ab,c^2+ac) \]只需$ A,P,X_{28} $共线,即\[
\begin{vmatrix}
b^2+c^2+ab+bc+ca & b^2+ab & c^2+ac \\
1 & 0 & 0 \\
\frac{\tan A}{b+c} & \frac{\tan B}{a+c} & \frac{\tan C}{a+b}
\end{vmatrix}
=0\]
化简后成了\[ c\tan B=b\tan C \]

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2022-7-28 12:39
$$F=(a+b,a+b,-c)$$
这个是对的. (由$F$是$(1:1:1)$和$(-1:1:1)$的中点可得)
$$Y=(\frac{1}{2},0,\frac{1}{2})$$
这个不对. 这个是$Y$的重心坐标.
$Y$到$b$的距离为0,到$a$的距离为$\triangle\over a$,到$c$的距离为$\triangle\over c$,所以$Y$的三线坐标应该是$(c:0:a)$.

Comment

习惯上, 以$x,y,z$表示重心坐标.  Posted 2022-7-28 12:52

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2022-7-28 12:55
$F(a+b:a+b:-c),Y(c:0:a)$
$E(a + c:-b:a + c), Z(b: a: 0)$
$P\Big(a^3+a^2 (b+c)+a \left(b^2+c^2\right)+(b-c)^2 (b+c):(a+b) \left(a^2+b^2-c^2\right):(a+c) \left(a^2-b^2+c^2\right)\Big)$
$X_{28}\Big(\frac{1}{(b+c) \left(-a^2+b^2+c^2\right)} : \frac{1}{(a+c) \left(a^2-b^2+c^2\right)} :\frac{1}{(a+b) \left(a^2+b^2-c^2\right)}\Big)$
$\left|
\begin{array}{ccc}
1 & 0 & 0 \\
a^3+a^2 (b+c)+a \left(b^2+c^2\right)+(b-c)^2 (b+c) & (a+b) \left(a^2+b^2-c^2\right) & (a+c) \left(a^2-b^2+c^2\right) \\
\dfrac{1}{(b+c) \left(-a^2+b^2+c^2\right)} & \dfrac{1}{(a+c) \left(a^2-b^2+c^2\right)} & \dfrac{1}{(a+b) \left(a^2+b^2-c^2\right)} \\
\end{array}
\right|$
$=\left|
\begin{array}{cc}
(a+b) \left(a^2+b^2-c^2\right) & (a+c) \left(a^2-b^2+c^2\right) \\
\dfrac{1}{(a+c) \left(a^2-b^2+c^2\right)} & \dfrac{1}{(a+b) \left(a^2+b^2-c^2\right)} \\
\end{array}
\right|$        (按第一行展开)
$=0$

6

Threads

55

Posts

814

Credits

Credits
814

Show all posts

 Author| Ly-lie Posted 2022-7-28 13:54
hbghlyj 发表于 2022-7-28 12:55
$F(a+b:a+b:-c),Y(c:0:a)$
$E(a + c:-b:a + c), Z(b: a: 0)$
$P\Big(a^3+a^2 (b+c)+a \left(b^2+c^2\right) ...
原来我把直角坐标弄混了果然还得看您的

Mobile version|Discuz Math Forum

2025-5-31 10:47 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit