Forgot password?
 Register account
View 210|Reply 2

[几何] 三圆共轴问题

[Copy link]

6

Threads

55

Posts

814

Credits

Credits
814

Show all posts

Ly-lie Posted 2022-7-28 08:06 |Read mode
某机构训练题,不知怎么回事就是不会做(滑稽)
已知$ ABCD $是梯形,满足$ AB\px CD $.$ AD,BC $交于$O$,直线$ AC $上两点$ D,E $满足$ \angle AEB=\angle ABC,\angle CFD=\angle ADC$,且$ E,A,C,F $顺次排列.
证明:$\odot( AOE),\odot (COF),\odot (BOD)$共根轴.
捕获.PNG

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2022-7-28 08:48
设$\odot(AOE),\odot(COF)$交于$O,P$.
设$\odot(AOE),\odot(COF),\odot(BOP),\odot(DOP)$的标准方程为$e=0,f=0,b=0,d=0$,因为它们共轴,所以存在$λ$使得$b=λe+(1-λ)f$,代入点$C$得$CO·CB=λCA·CE+(1-λ)0$,即$λ={CO·CB\over CA·CE}$.
同理,存在$μ$使得$d=μe+(1-μ)f$,代入点$A$得$AO·AD=μ0+(1-μ)AC·AF$,即$μ=1-{AO·AD\over AC·AF}$.
只需证明$λ=μ$即可推出$b=d$.
下面就是导比例.

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2022-7-28 08:56
因为$CA·CE=CB^2$,所以${CO·CB\over CA·CE}={CO\over CB}=\frac{OD}{AD}$
因为$AC·AF=AD^2$,所以${AO·AD\over AC·AF}={AO\over AD}$
所以${CO·CB\over CA·CE}=1-{AO·AD\over AC·AF}$.
证毕.

Mobile version|Discuz Math Forum

2025-5-31 11:06 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit