Forgot password
 Register account
View 317|Reply 2

[不等式] 大佬帮忙看看第三问

[Copy link]
人间风雪客 posted 2022-7-28 10:05 |Read mode
第三问,有没有好点的证明

3

Threads

9

Posts

1

Reputation

Show all posts

exctttt posted 2022-10-4 00:09
2022年天津卷最后一题
设公共点为 $(x_0,y_0)$
则 $e^{x_0}-a\sin x_0=b\sqrt{x_0}$
由 Cauchy 不等式知
$e^{x_0}=a\sin x_0+b\sqrt{x_0}\le\sqrt{(a^2+b^2)(\sin^2x_0+x_0)}$
欲证 $a^2+b^2>e$,只需证 $\dfrac{e^{2x_0}}{\sin^2x_0+x_0}>e$
这个不等式事实上对任意的 $x>0$ 均成立(显然 $x\ne0$)
随便放一下 $e^{2x-1}\ge2x>x+\sin^2x$
因此 $\dfrac{e^{2x}}{\sin^2x+x}>e$
得证
original poster 人间风雪客 posted 2022-10-5 18:34
exctttt 发表于 2022-10-4 00:09
2022年天津卷最后一题
设公共点为 $(x_0,y_0)$
则 $e^{x_0}-a\sin x_0=b\sqrt{x_0}$
谢谢

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 14:36 GMT+8

Powered by Discuz!

Processed in 0.013309 seconds, 25 queries