Forgot password?
 Register account
View 192|Reply 1

[几何] 用二刻尺作倍立方

[Copy link]

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2022-8-13 03:08 |Read mode
zh.wikipedia.org/wiki/二刻尺作圖
Neusis_en[1].gif 二刻尺是上面有二個刻度的直尺。
如圖,有兩條線l、m和點P。可以將尺與點P對齊,並讓其中一個刻度保持在l(圖中黃點)上,慢慢轉動尺 (允許尺貼著P滑動),直到另一個刻度碰到m(圖中藍點),此線即為所求(圖中深藍色線)。

用二刻尺作倍立方

二刻尺刻度的間距为1。
• AB=BC=CA=BD=1,且A、B、D共線。
• 將二刻尺贴著A點,並將兩刻度一個移到CD上,另一個移到BC上,分別稱為G點和H點。于是GH=1。
• AG的長度为$x$, 求證$x=\sqrt[3]{2}$。
A B D C G H F E 1 1 1 1 x 1

證明

在Rt△ACG中$CG=\sqrt{x^2-1}$
对△ACG和CH用分角定理,$$\frac{AH}{GH}=\frac{AC\sin120°}{CG\sin30°}$$即$$\frac{x+1}{1}=\frac{\sqrt3}{\sqrt{x^2-1}}$$即$$(x + 1)^2 (x^2 - 1) - 3=0$$因式分解,$$(x+2) \left(x^3-2\right)=0$$所以$x=\sqrt[3]2$.

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2022-8-13 03:26
en.wikipedia.org/wiki/Neusis_construction
Regular Polygons
In 2002, A. Baragar that showed that every point constructible with marked ruler and compass lies in a tower of fields over $\Bbb Q$,$$ \Bbb Q = K_0 \subset K_1 \subset \dots \subset K_n = K$$such that the degree of the extension at each step is no higher than 6. Of all prime-power polygons below the 100-gon, this is enough to show that the regular 23-, 29-, 43-, 47-, 49-, 53-, 59-, 67-, 71-, 79-, 83-, and 89-gons cannot be constructed with neusis. (If a regular $p$-gon is constructible, then $\zeta_p = e^\frac{2\pi i}{p}$ is constructible, and in these cases $p−1$ has a prime factor higher than 5.)

Mobile version|Discuz Math Forum

2025-5-31 11:11 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit