Forgot password?
 Create new account
View 178|Reply 0

[几何] A property of K024 (Problemas-de-Geometría 334)

[Copy link]

3147

Threads

8493

Posts

610K

Credits

Credits
66163
QQ

Show all posts

hbghlyj Posted at 2022-8-14 07:54:17 |Read mode
Problemas-de-Geometría

Problem 334. Let $A B C$ be a triangle. For any point $P$, call $X Y Z$ its cevian triangle and $D E F$ its circumcevian triangle. The locus of points $P$ such that
$$
\frac{A D}{A X}+\frac{B E}{B Y}+\frac{C F}{C Z}=2
$$
is the cubic catalogued as K024 with equation
$$
b^{2} c^{2} x^{2} y+a^{2} c^{2} x y^{2}+b^{2} c^{2} x^{2} z+a^{2} c^{2} y^{2} z+a^{2} b^{2} x z^{2}+a^{2} b^{2} y z^{2}=0 .
$$
289847306_871581577566034_6132296983218410098_n.png
A limit case for 334
Problem 335. Let $A B C$ be a triangle and $P$ a point on the circumcircle with cevian triangle $X Y Z$. Then we have
$$
\frac{A P}{A X}+\frac{B P}{B Y}+\frac{C P}{C Z}=2 .
$$
289971671_871926047531587_4223718453319665894_n.png
Remark for 335.
If $P=(u: v: w)$ in homogeneous barycentric coordinates and $X Y Z$ is the cevian triangle of $P$ then we have
$$
\frac{P A}{A X}=-\frac{v+w}{u+v+w}, \quad \frac{P B}{B Y}=-\frac{w+u}{u+v+w}, \quad \frac{P C}{C Z}=-\frac{u+v}{u+v+w}
$$
therefore we have
$$
\frac{A P}{A X}+\frac{B P}{B Y}+\frac{C P}{C Z}=2
$$
for any point $P$.

手机版Mobile version|Leisure Math Forum

2025-4-20 22:18 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list