Forgot password
 Register account
View 173|Reply 2

[不等式] $\sum_{cyc}\frac{a}{\sqrt{2b^2+2c^2-a^2}}\geqslant\sqrt{3}$.

[Copy link]

68

Threads

406

Posts

3

Reputation

Show all posts

Tesla35 posted 2022-8-15 08:59 |Read mode
设$a,b,c>0$,且满足$3\max\{a^2,b^2,c^2\}\leqslant2(a^2+b^2+c^2)$,证明:$\sum_{cyc}\frac{a}{\sqrt{2b^2+2c^2-a^2}}\geqslant\sqrt{3}$.

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2022-8-15 14:08
条件看似吓人,其实只是为了确保根号下非负,并无其他实际用途……

由 holder 有
\[\sum a(2b^2+2c^2-a^2)\left( \sum\frac a{\sqrt{2b^2+2c^2-a^2}} \right)^2\geqslant(a+b+c)^3,\]
所以只需证
\[(a+b+c)^3\geqslant3\sum a(2b^2+2c^2-a^2),\]
展开配方为
\[\sum(a+b)(a-b)^2+2\sum a(a-b)(a-c)\geqslant0.\]

68

Threads

406

Posts

3

Reputation

Show all posts

original poster Tesla35 posted 2022-8-15 15:55
kuing 发表于 2022-8-15 14:08
条件看似吓人,其实只是为了确保根号下非负,并无其他实际用途……

由 holder 有
超出我的能力范围了

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 13:56 GMT+8

Powered by Discuz!

Processed in 0.011774 seconds, 22 queries