zh.wikipedia.org/wiki/古德曼函數 它無須涉及複數便將三角函數和雙曲函數連繫起來。
古德曼函數,圖中的藍色橫線為漸近線$y=\pm\frac{\pi}{2}$ 古德曼函數的定義如下
\begin{align*}{\rm{gd}}(x)&=\int_0^x\frac{\mathrm dt}{\cosh t} \qquad -\infty<x<\infty\\
&=\arcsin\left(\tanh x \right)=\mbox{arctan}\left(\sinh x \right)=\mathrm{arccsc}\left(\coth x \right) \\
&=\mbox{sgn}(x)\cdot\mathrm{arccos}\left(\mathrm{sech}\,x \right)=\mbox{sgn}(x)\cdot\mathrm{arcsec}\left(\cosh x \right) \\
&=2\arctan(e^x)-\frac{\pi}{2}=\frac{\pi}{2}-2\arccot(e^x)\\
&=2\arctan\left(\tanh\frac{x}{2}\right)\\
&=\mathrm{arccot}\left(\mathrm{csch}\,x \right)\\
\end{align*}(${\rm{gd}}(x)=\mathrm{arccot}\left(\mathrm{csch}\,x \right)$僅在$\mathrm{arccot}$的值域設為$[-\frac{\pi}{2},\frac{\pi}{2}]$時成立,參見反餘切。)
有以下恆等式:
\begin{aligned}\sin\left(\mbox{gd}x\right)&=\tanh x ;&\quad\cos\left(\mbox{gd} x\right)&=\mbox{sech} x\\
\tan\left(\mbox{gd} x\right)&=\sinh x ;&\quad\sec\left(\mbox{gd} x\right)&=\cosh x\\
\cot\left(\mbox{gd} x\right)&=\mbox{csch} x ;&\quad\csc\left(\mbox{gd} x\right)&=\coth x\\
\tan\left(\frac{\mbox{gd} x}{2}\right)&=\tanh\frac{x}{2} ;&\quad\cot\left(\frac{\mbox{gd} x}{2}\right)&=\coth\frac{x}{2}\\
\end{aligned} |