Forgot password?
 Register account
View 333|Reply 2

[几何] Mandelbrot集的边界 作为多项式纽线的极限

[Copy link]

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2022-8-20 22:37 |Read mode
coamqcajzq[1].png The Mandelbrot Curves - A better technique for calculation
desmos.com/calculator/coamqcajzq

These are the first 50 in a series of implicit polynomial curves that converge to the boundary of the Mandelbrot set.  The curves are computed using iteration of the function f(z) = z² + c, where z and c are complex numbers.  Each curve is the locus of points c where the magnitude of z is equal to 2 after a set number of iterations.  Credit to user "The Fractalistic" on YouTube for the technique, with a modification to slightly speed up the calculations.  Be patient if you decide to zoom in to this plot, as it will still take some time for the calculations to run to completion.

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2022-8-20 22:41
Last edited by hbghlyj 2022-8-21 14:07给定一个$n$次复系数多项式$p(z)$, 集合$\{z∈\Bbb C:|p(z)|=c\}$称为多项式纽线(polynomial lemniscate)
在笛卡尔坐标系可以写成$f(x,y)=c^2$, 其中$f(x,y)=p(z)\overline{p(z)}$是一个$2n$次多项式.
当 $p$ 是 1 次多项式时,所得曲线是一个圆,其圆心是 $p$ 的零点。
当 $p$ 是 2 次多项式时,曲线是卡西尼卵形线,其焦点是 $p$ 的零点。
$\lvert z^6+z^5+z^4+z^3+z^2+z+1\rvert=1$ Cyc7[1].png

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2022-8-21 21:08
\begin{aligned}
z&=x+iy\\
f(z)&=z^2+z\\
Q(z)&=|z|^2\\
\text{多项式纽线}&\\
Q(z)&=4\\
Q(f(z))&=4\\
Q(f(f(z)))&=4\\
&\vdots
\end{aligned}youtube.com/shorts/775og3l0NIc

Mobile version|Discuz Math Forum

2025-5-31 11:11 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit