|
Author |
hbghlyj
Posted 2022-8-22 09:43
Theorem 4
$2n+1$为素数.
$3^n+1$被$2n+1$整除, 若$n\equiv2,3\pmod6$;
$3^n-1$被$2n+1$整除, 若$n\equiv0,5\pmod6$. $\varphi(2n+1)=2n$且$\gcd(3,2n+1)=1$,由Euler定理,$3^{2n}\equiv1\pmod{2n+1}⇒3^n\equiv\pm1\pmod{2n+1}$.
若$n\equiv2,3\pmod6$, 则$2n+1\equiv5,7\pmod{12}$, 3是$\bmod2n+1$的二次剩余, $3^n\equiv1\pmod{2n+1}$;
若$n\equiv0,5\pmod6$, 则$2n+1\equiv\pm1\pmod{12}$, 3是$\bmod2n+1$的非二次剩余, $3^n\equiv-1\pmod{2n+1}$.
又见math.stackexchange.com/questions/2162033 |
|