Forgot password?
 Register account
View 250|Reply 7

[函数] 一道函数不等式

[Copy link]

92

Threads

89

Posts

983

Credits

Credits
983

Show all posts

aishuxue Posted 2022-8-22 20:24 |Read mode
求证: $e^{x-3}>x \ln x-x$.

92

Threads

89

Posts

983

Credits

Credits
983

Show all posts

 Author| aishuxue Posted 2022-8-22 20:27
不知道如何通过放缩证明!

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2022-8-22 21:41
挺弱的呀感觉,当 `x\leqslant1` 时显然成立,当 `x>1` 时,由 `e^x>1+x` 有
\[\LHS=(e^{x/2-3/2})^2\geqslant\left( 1+\frac x2-\frac32 \right)^2=\frac14(x-1)^2,\]
另一方面由 `\ln x<\frac{x-1}{\sqrt x}` 得
\[\RHS<\sqrt x(x-1)-x,\]
所以只需证
\[\frac14(x-1)^2\geqslant\sqrt x(x-1)-x,\]
令 `\sqrt x=1+t`,上式恰好是个完全平方
\[\frac14(t^2-2)^2\geqslant0.\]

92

Threads

89

Posts

983

Credits

Credits
983

Show all posts

 Author| aishuxue Posted 2022-8-22 21:49
借助几何画板的辅助, 我是证明$e^{x-3}>\dfrac{3}{100}x^3>x\ln x-x$.

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2022-8-22 21:52
也可以不放缩右边,对左边再放一点:
\[\LHS=(e^{x/2-3/2})^2\geqslant\left( 1+\frac x2-\frac32 \right)^2=\frac14(x-1)^2>\frac14(x^2-2x),\]
所以只需证
\[\frac14(x-2)>\ln x-1,\]

\[x+2-4\ln x>0,\]
求导知 `x=4` 时左边取最小值 `6-8\ln2>0`,即得证。

84

Threads

2339

Posts

110K

Credits

Credits
13091

Show all posts

其妙 Posted 2022-8-22 22:25
$\dfrac{{{e^{x - 3}}}}{{{x^3}}} = \dfrac{1}{{{e^3}}}{(\dfrac{{{e^{\dfrac{x}{3}}}}}{x})^3} \ge \dfrac{1}{{{e^3}}}{(\dfrac{e}{3})^3} = \dfrac{1}{{27}}$,

$\dfrac{{\ln x - 1}}{{{x^2}}} = \dfrac{{2\ln \dfrac{x}{e}}}{{2{x^2}}} = \dfrac{{\ln {t^2}}}{{2{e^2}{t^2}}}\le \dfrac{1}{{2{e^2}}}\dfrac{1}{e} = \dfrac{1}{{2{e^3}}}$,其中$ x=et$,

$\dfrac{1}{{27}} > \dfrac{1}{{2{e^3}}} \Leftrightarrow 2{e^3} > 27 \Leftrightarrow {e^3} > {2.7^3} = 19.683> \dfrac{{27}}{2}$,显然成立。

所以,$e^{x-3}>x \ln x-x$
妙不可言,不明其妙,不着一字,各释其妙!

92

Threads

89

Posts

983

Credits

Credits
983

Show all posts

 Author| aishuxue Posted 2022-8-22 22:30
谢谢各位高手, 学习了!

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2022-8-25 13:47
其妙 发表于 2022-8-22 22:25
$\dfrac{{{e^{x - 3}}}}{{{x^3}}} = \dfrac{1}{{{e^3}}}{(\dfrac{{{e^{\dfrac{x}{3}}}}}{x})^3} \ge $ ...
不要滥用 \dfrac ,上下标里的分式不应该用,太大了

Mobile version|Discuz Math Forum

2025-5-31 10:35 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit