Forgot password?
 Register account
View 261|Reply 2

[不等式] 求个思路 脑子嗡嗡的

[Copy link]

107

Threads

225

Posts

2905

Credits

Credits
2905

Show all posts

facebooker Posted 2022-8-24 23:22 |Read mode
已知$xy\neq 0, x+y\neq 0, \left(\frac{y+z}{x}+2\right)^{2}+\left(\frac{z}{y}+2\right)^{2}+\left(\frac{z}{x+y}-1\right)^{2}$的最小值为___

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2022-8-25 02:02
暴力方法,观察到 z 全部在分子,因此原式实际上是关于 z 的开口向上的二次函数,那就直接对 z 求导好了,解出极小值点是
\[z=-\frac{y(x+y)(2x+y)}{x^2+xy+y^2},\]
代回去,结果恰好是 5。

是 5 令我马上想起这帖:
forum.php?mod=viewthread&tid=7135
同样是三项平方和,结果同样是 5,不知有没有关联……

107

Threads

225

Posts

2905

Credits

Credits
2905

Show all posts

 Author| facebooker Posted 2022-8-25 04:02
  参考答案
\[x=a-b ,y=b-c,z=c\]
\[\sum{\dfrac{b}{a-b}\cdot \dfrac{c}{b-c} +\sum\dfrac{b}{a-b}}=-1,\]
\[(\dfrac{b}{a-b}+2)^2+(\dfrac{c}{b-c}+2)^2+(\dfrac{a}{c-a}+2)^2=\]
\[(\dfrac{b}{a-b}+\dfrac{c}{b-c}+\dfrac{a}{c-a}+3)^2+5\geqslant 5\]

Mobile version|Discuz Math Forum

2025-5-31 10:55 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit